

The Application
Tutorial and
Listings Book

for RISC OS Computers

www.dragdrop.co.uk

The Application Tutorial and Listings Book

for RISC OS Computers

© 2021 Chris Dewhurst
ISBN 978-1-80068-130-9
First published 2021 by
Independent Publishing Network (IPN)
https://bookisbn.org.uk

The author is indebted to the past and present writers of fine
software applications for the RISC OS computer platform,
without which this book would have been very difficult to
produce.

Produced on RISC OS computers using Impression Style,
Draw, Artworks, PostScript3 printer driver, and the Kyocera
Ecosys M5521cdn multifunctional device.

All Trademarks and Registered Trademarks are hereby
acknowledged. Raspberry Pi anmd the Raspberry Pi logos are
registered trademarks of the Raspberry Pi Foundation.

Printed and bound in Great Britain by
Drag ’N Drop Publications,
Dingwall, Scotland.

www.dragdrop.co.uk dragdrop@dragdrop.co.uk
Typeset in 11/12pt Plato.

Acknowledgements

This book would not have been possible without the following people. Thanks
to Tony Bartram at www.amcog.co.uk for help in testing the Envelope Editor
(Chapter 8) which was written for the RDSP module (written by Tony).
Thanks to Geoff McVeigh for help testing the Plotter and Notepad (Chapter
10). Thanks to the fiendly assistance of members of the forum at
riscosopen.org.uk, not forgetting the work done by ROOL on RISC OS itself.
Finally thanks to Sybil Harris at www.sybilharris.com for once again providing
the amazing front cover artwork.

Contents
Acknowledgements . 3

1 . . Introduction . 11

Programs . 11
Equipment . 12
Variable Names. 12
Typing in programs – Edit . 12
Currently Selected Directory. 13
Checksum Routine . 14
Standard Procedures . 15
When Things Go Wrong . 15
The Programs Stick . 15

2 . . The Desktop. 17

Size, Resolution, and Graphics Units . 18
The Block. 19
Rectangle Painter . 20
Window Edger . 22
Window Information Program . 23
Keyboard Menu Button . 24
Pulsating Pointer. 25
Autoscroller . 26
Wimp_Poll and Events . 27
Window and Icon Snapper. 27
Application List . 30
Tasks, Applications, Programs . 31
Chapter Summary . 31

3 . . Words, Bytes ’N Bits . 33

! (Pling) . 33
? (Query) . 34
$ (String) . 34
! and ? and $. 35
Binary and 32-bit integers . 35
OR, EOR, AND . 36

5

Nybbles and 24-bit Values . 38
Clear Words and EOR Words . 38
Chapter Summary . 40

4 . . Windows. 43

Window Definition Block . 48
Window Colours . 51
Advanced Topics. 54
Work Area, Visible Area, Scroll Offsets . 54
Outline Fonts in Window Titles . 59
Chapter Summary . 61

5 . . Icons. 63

Iconbar Icons – Pool Sprites. 63
Pool Sprites . 66
Icon Bar Icons – Text . 68
Style. 68
Icon Bar Icons – Text and Sprite . 69
Window Icons. 70
Icon Handles . 72
Icons with loops . 72
Icon Button Type . 73
Selecting Icons . 74
Writeable Icons – padding . 74
Validation Strings . 74
R parameter . 75
Validation Strings – R5 and R6 . 76
Icon numbering . 77
‘About this program ’ Window . 77
Validation Strings – A parameter . 79
Icon Clicks . 80
Iconbar Clicks. 82
Retrieving Icon Text . 84
Validation Strings – K parameter . 86
Outline Fonts . 86
Validation Strings – F parameter . 88
Radio Buttons . 88

6

The Application Tutorial and Listings Book

Framed Icons . 89
Which Icon is Selected?. 91
Displaying Output Properly . 94
Changing Icon Flags . 96
Icon Pre-select. 98
Icon Auto-select . 98
Bump Icons . 100
Slider Icons . 102
Slider Icons (RISC OS 3.5). 107
User Sprite Icons . 107
Modes . 108
Generative Sprites . 108
Squared Paper . 111
Slider Icons Take 2 . 113
Dial Icons . 115
Sprite Modes Demo . 118
Adding More Pool Sprites . 120
Icons with Paint . 122
Chapter Summary . 124

6 . . Error Handling, Reporting and Memory 127

Error trapping . 127
Reporting . 128
Text Windows. 129
Absolute addressing . 131
Application Memory . 132
When Things Go Wrong . 132
Chapter Summary . 133

7 . . Dragging, Dropping and Working with Files 135

Drag–drop. 135
Loading Data Files . 138
Saving Files – Scrap File . 140
Drag–Save . 144
In-window drag . 147
Chapter Summary . 149

7

Contents

8 Demonstration Applications . 151

Roman Numerals . 151
Piano 153
Desktop Function Keys . 154
Desktop Calculator . 155
Giant Calculator . 157
Icon Bar Clock . 160
Window Flag Generator . 161
Icon Flag Generator. 164
Maestro Bar Copier . 166
Draw Utilities . 171
Stave Paper . 171
Sheet Labels . 174
Drawjot . 179
Drawtext . 182
DrawL . 186
Desktop Solitaire . 191
NOTPER . 194
Envelope Editor . 198
Module Auto 32 Bit. 203

9 . . Menus. 209

Menus and Submenus . 209
Menu Demonstrations . 215
Graphical Menus. 215
Font Menus . 216
Colour menu . 218
Writeable Entries. 220
Adding Menus To Your Apps . 221
File Type Setting Utility . 221
Window Closer . 223
Chapter Summary . 228

10 . User Graphics . 231

Custom Icon Borders . 236
Detecting Key Presses . 238
Text and Graphics Editors . 240
8

The Application Tutorial and Listings Book

Notepad . 240
File Editor . 244
Plotter . 250
Scaling Tables and Palettes. 253
256-colour sprites . 258
Advanced Topics – 8 Bit Emulation . 258
Chapter Summary . 263

11. . Application Directories. 265

System Variables and Private Directories . 268
Custom File Types . 269
Chapter Summary . 270

12 . A General-Purpose Save-As Dialogue Box. 273

Appendix 1. 279

Standard Procedures . 279

Appendix 2. 285

System Calls . 285
Numeric SYS calls . 289

Appendix 3. 291

Hex Binary . 291
Logic Tables . 291
Program . 292

Appendix 4 Wimp Events . 295

9

Contents

Appendix 5 Key Codes . 297

Bibliography . 301

Hard copy publications . 301
Internet resources . 301

Glossary. 303

Index. 307

10

The Application Tutorial and Listings Book

1 Introduction

This book is about writing multi-tasking applications, or ‘apps’ for short, for
the RISC OS desktop, or GUI (Graphical User Interface). It is written in
similar style to the Drag ’N Drop magazine, which is all about making
computer programming on RISC OS a hands-on, fun and accessible
experience.

Traditionally, there has been a shortage of RISC OS reference material. What
exists is excellent for the experienced technician but impenetrable for the
beginner. Incidentally, when we say ‘beginner’ we mean you are familiar with
the RISC OS desktop from a user point of view (iconbar, running programs,
using the three-button mouse, opening directories and so forth) and have
reasonable knowledge of BBC Basic (including elementary graphics using
PLOT and DRAW) but haven't necessarily done any application coding.

Previous books on writing for your desktop tended to concentrate on building
a single application, adding more features as chapters went on. Listings tended
to be long winded, sometimes relying on libraries of code only provided on a
floppy disc – a medium that is now digitally redundant.

This book is different, however. It consists of lots of small (under 6K)
demonstration listings, all of them printed in the pages of this book. None of
them need vast libraries of routines, except for short procedures introduced as
we go along and all listed in the appendices. Some programs are taken from
the pages of Drag ’N Drop, many are complete applications in themselves to
perform some useful task like converting a file, which is easy to do with the
reknowned ‘drag and drop’ operation of RISC OS.

Programs

Desktop apps can be written in virtually any language available on RISC OS –
Basic, Assembler, C, etc. We use BBC Basic in this book because BBC Basic
has come free with every RISC OS distribution, built into the ROM chips in
the Acorn ‘A’ machines of the 1980s right up to the ROM images on SD cards
for Raspberry Pi’s in the 2020s.

You’re assumed to have some proficiency with BBC Basic. Many people know
the language from growing up with a BBC Micro but if you are completely
new then we refer you to at least the first few chapters of the BBC Basic
Reference Manual. We recap on general fiddling around at binary level in
Chapter 3. (Bitwise manipulation, although discussed in older generic books

11

2 The Desktop

We are familiar with the RISC OS desktop from everyday use – double
clicking icons, typing documents and spreadsheets, dragging and dropping etc.
In this chapter we take a slightly deeper look with short demo programs using
simple BBC Basic graphics to illustrate aspects of the system to help us get a
feel for what's in store.

The INFO program below is a very simple application and it introduces our
first three 'Wimp' calls, WIMP being the traditional computer programming
acronymn for Windows Icons Menus and Pointers. As you move the pointer
around the desktop, the text at the top left displays the pointer's coordinates in
graphics units (also known as OS units), the handle of the window and the icon
underneath the pointer. Press Escape to stop.

REM VERY SIMPLE APP
SYS "Wimp_Initialise",200,&4B534154,"Info"
DIM B 256
PROCGET
PROCUPDATE
REPEAT
SYS "Wimp_Poll",,B
PROCGET
IF X<>OX OR Y<>OY PROCUPDATE
UNTIL INKEY-113
SYS "Wimp_CloseDown"
END
:
DEF PROCGET
SYS "Wimp_GetPointerInfo",,B
X = !B : Y = B!4
W = B!12 : I = B!16
ENDPROC
:
DEF PROCUPDATE
VDU 5 : GCOL 131 :GCOL 15
PRINT TAB(40,0) STRING$(40,CHR$127) "("; X; ","; Y; ") ";
PRINT "WINDOW &";~W;" ICON ";I
OX = X : OY = Y
ENDPROC

INFO size=429 bytes, CRC=38603

A handle is the computer's way of identifying the window or icon. When
interacting with the system we generally always have to give the handle of

17

thing thing we are talking about – window handle, icon handle, font handle and
file handle frequently crop up in RISC OS programming.

Size, Resolution, and Graphics Units

Move your mouse pointer to the bottom left of the screen so the coordinate
readings are (0,0). Now move the pointer diagonally, up and to the right. How
far can you go? The top right coordinates of my desktop are (3838,2158) so
the size of my desktop display is 3838 × 2158 graphics units. Load up Paint
and click Menu on the iconbar icon and choose Snapshot. Ensure No delay
(instant effect) is selected, and choose Grab whole screen, then click OK.
Drag the sprite in the 'save as' box back onto Paint's icon bar icon. Click
Menu > Misc > Sprite. What is the width and height? Mine is 1920 x 1080.

The desktop size is different its resolution which is the number of pixels. On
modern RISC OS displays there are 2 graphics units per pixel, so when we talk
of coordinates (300,500) on the screen we are actually referring to the 150th
pixel from the left and the 250th pixel from the bottom of the screen.

(300,200)
(300,200)

In the past we may have referred to a screen size of 1280 by 1024 graphics
units (on the BBC Micro or Archimedes say) and depending on the screen
mode this meant a resolution of 640 x 480 pixels. Graphics coordinates
(300,200) would be about a quarter of the way across the screen and a quarter
of the way up on an old 640 × 480 display but on a display of 3838 × 2158
graphics units only a tenth of the way across and up. Don’t fret if you don”t
understand this, just be aware that when we come to put stuff on the screen
the appearance and position can take you by surprise.

Every application must start with a line similar to line 2 of INFO. It uses a

18

The Application Tutorial and Listings Book

overwriting. It draws a rectangle with one corner at (XC,YC) with width (X-
XC) and (Y-YC).

Similar to INFO, if the new pointer coordinates are different from the old
ones (either X<>OX OR Y<>OY) the PROCUPDATE is called with GCOL
plotting option 3 for EORing the colour on the screen.

When you have had enough, press Escape and type F12 followed by Return to
clear up the mess on the desktop.

SYS "Wimp_Initialise",200,&4B534154,"SHAPES"
DIM B 2000
PROCGET
XC = X : YC = Y
OX = X : OY = Y
REPEAT
SYS "Wimp_Poll",,B
PROCGET
IF BT PROCCLICK
IF X<>OX OR Y<>OY PROCUPDATE
UNTIL INKEY-113
SYS "Wimp_CloseDown"
END
:
DEF PROCGET
SYS "Wimp_GetPointerInfo",,B
X = !B : Y = B!4 : BT = B!8
ENDPROC
:
DEF PROCUPDATE

21

2 The Desktop

PROCPLOT(3)
RECTANGLE FILL XC, YC, OX-XC, OY-YC
OX = X : OY = Y
ENDPROC
:
DEF PROCCLICK
IF (BT AND 1)=1 PROCPLOT(3) ELSE PROCPLOT(0)
XC = X : YC = Y
ENDPROC
:
DEF PROCPLOT(K)
GCOL K,3
RECTANGLE FILL XC, YC, X-XC, Y-YC
ENDPROC

RECPAINT size=526 bytes, CRC=11659

Window Edger

This program draws a thick red line around the window under the pointer
when the Ctrl+Alt keys are pressed. It gets the handle of the window under the
pointer as in the INFO program, then uses a new call SYS call,
“Wimp_GetWindowInfo”. It takes as input the window handle at B. It returns
the left edge X coordinate in B+4, bottom edge Y in B+8, right edge X in
B+12 and top edge Y in B+16. These are stored in LX, BY, RX and TY
respectively in line 15. The loop in lines 16-18 draws rectangles of increasing
width and depth to give the thick line effect.

As before press Escape to stop and F12 followed by Return if you want to
clean up any garbage.

SYS "Wimp_Initialise",200,&4B534154,"Window Rectangle"
DIM B 2000
REPEAT
SYS "Wimp_Poll",,B

22

The Application Tutorial and Listings Book

SYS "Wimp_Poll",,B
IF INKEY-6 AND INKEY-5 PROCACTION
UNTIL INKEY-113
SYS "Wimp_CloseDown"
END
:
DEF PROCACTION
SYS "Wimp_GetPointerInfo",,B
W=B!12 :REM WINDOW UNDER POINTER
I=B!16 :REM ICON
B!8=2 :REM MENU BUTTON
SYS "Wimp_SendMessage",6,B,W,I
ENDPROC

KEYMENU size=341 bytes, CRC=20335

As before, Wimp_GetPointerInfo is used to get the handle of the window and
icon under the pointer. A new call, SYS “Wimp_SendMessage” is used. We'll
encounter messages later on in the book and you don't need to understand
anything about them this stage, just that register R0 contains 6 (message
number for "mouse click"), R1 the memory Block and registers R2 and R3 the
window handle W and icon handle I respectively. This is the one call, by the
way, which uses register R0 so no double commas !

Pulsating Pointer

This is a very short program which adjusts the colour of the mouse pointer by
level L after a wait W (2 centiseconds), giving the illusion of a throbbing
pointer. Press Escape to stop the effect.

The Basic statements MOUSE COLOUR 1 and MOUSE COLOUR 2 control
the colours of the pointer outline and inside of the pointer. The colours are
expressed in quantities of the three component colours red, green, and blue
from 0 to 255. PROCCHANGE applies the level of colour to all three colours so
the throbbing is in white through grey to black, however if you wanted a blue/
pink pointer you would do MOUSE COLOUR 1, L, 0, L and MOUSE
COLOUR 2, 255–L, 0, 255–L in line 20.

SYS "Wimp_Initialise",200,&4B534154,"Mouse colours"
DIM B 256
TI = TIME

25

2 The Desktop

W = 2
L = 1
REPEAT
SYS "Wimp_Poll",,B
IF TIME > TI+W PROCCHANGE
UNTIL INKEY-113
MOUSE COLOUR 1, 0,255,255
MOUSE COLOUR 2, 0,0,255
SYS "Wimp_CloseDown"
END
:
DEF PROCCHANGE
TI=TIME
L=(L+16) AND 255
MOUSE COLOUR 1, L,L,L
MOUSE COLOUR 2, 255-L,255-L,255-L
ENDPROC

PULSE size=321 bytes, CRC=16131

Autoscroller

If you're feeling lazy and can't be bothered to press the scroll arrows beside
windows, this program is for you. It uses a slightly extended version of the SYS
"Wimp_Poll" call. It has TO E added to the end. The TO instructs the system
to return information. E is the Event Number. We’ll meet events later.

PROCSCROLL gets the pointer coordinates into X and Y and additionally reads
the scroll offsets into XS and YS from B+20 and B+24 of the block after
"Wimp_GetWindowState" is called. Scroll offsets are the horizontal and
vertical bars you see at the bottom and right of some windows allowing you to
pan over a document occupying a larger area than the window. If the pointer
coordinates are within a certain distance of the edges of the window (16
graphics units in this case) then the scroll offsets are adjusted and Message
Number 2 (“open window”) is sent to the application.

Use Autoscroller to find the secret red button in the ‘About this Operating
System’ window. Does it do anything if you click it? Try it and see!

SYS "Wimp_Initialise",200,&4B534154,"AUTO SCROLL"

26

The Application Tutorial and Listings Book

3 Words, Bytes ’N Bits

This chapter is a mainly a recap on memory – your computer's memory that
is. Computer programming is largely a reading-in-silence affair, as opposed to
talking out loud, so we give some tips at pronouncing computer code. If you
don't have anyone to talk to, it's still useful to improve your elocution. We
cover some important theory which lays the foundation for our programming
later on. It may seem tedious and if you really feel you are an expert on all
this you can skip to the next chapter.

You will already know that the computer stores its numbers in bytes and there
are 8 bits to a byte, a byte holding a number from 0 to 255. (Or 0 to 127 with
a sign bit but we don't concern ourselves with that here.)

We saw in Chapter 2 that on RISC OS (and modern computers so far) four
bytes are grouped into a word. Our friend &4B534154 is a word, sometimes
referred to as a four-byte integer or 32-bit integer in older books on BBC Basic.
It consists of four bytes &4B, &53, &41 and &54. There are 8 bits in a byte so
8 × 4 = 32 bits in a word. The ampersand (&) indicates 'hexadecimal'. The
ampersand is not a computing standard and lots of people use 'x0' (lower case
X and zero) to mean hexadecimal, or hash (#), dollar ($) or even all four
(�). BBC Basic only understands the ampersand, though.

We also saw in Chapter 2 that &4B534154 is the four Ascii codes (American
Standard Code for Information Interchange - say "AHSS - key") for "TASK"
spelt backwards. It's a ‘magic word’ needed to activate applications, the reasons
for which are best left to the history books.

! (Pling)

You can put (poke) a word into the computer's memory and read it back
(peek) with ! (pling, bang, exclamation mark but known as pling on RISC
OS). It's called an operator. You must have reserved a block of memory with
DIM to use the operator. Type Ctrl+F12 to open a task window, type BASIC
and press Return.

ARM BBC BASIC V (C) Acorn 1989

Starting with 651516 bytes free

>

Type the following lines at BBC Basic's > prompt. You say "Dim Bee one

33

hundred, pling Bee equals hex four bee, five three, four one, five four. Print
tilde pling Bee".

DIM B 100
!B=&4B534154
PRINT ~!B
 4B534154

The ~ (tilde) tells the computer to “print in hexadecimal”.

? (Query)

The query or question mark operator lets you poke or peek bytes. Assuming
you have typed in the above, try

PRINT ~?B,~B?1,~B?2,~B?3
 54 41 53 4B

It's the same as &4B534154 but in reverse. The &54 is called the low byte and
appears at the end of &4B534154 but is the first byte in memory. The &4B is
the high byte, at the beginning of &4B534154 but the last byte in memory.
This ‘arse-about-faceness’ dates from a time when computers were slower and
had less memory. If you wanted to store the number 100 (hexadecimal &64)
in memory, that only needs one byte. Expressed as a word that's &00000064.
The &64 might as well be stored first in memory since the other three bytes
are zero.

$ (String)

The dollar or string operator in BBC Basic is used to peek or poke strings.
Type the following at the prompt (say "string Bee equals open quotes risk
space oh ess" close quotes, Print string Bee"):

$B="RISC OS"
PRINT $B
RISC OS

Now type

FOR I=0 TO 7:PRINT I?B:NEXT
 82
 73
 83
 67

34

The Application Tutorial and Listings Book

4 Windows

In Chapter 2 we took out time messing around on the RISC OS desktop with
some primitive multi-tasking programs, meeting some SYStem calls and (if
you chose to read Chapter 3) surviving some in-depth discussion about bits
and bytes. This gives us a good foundation for the road we are now about to
set out on, starting with putting a window on the screen.

Windows don’t suddenly appear the minute you tell RISC OS about them.
First of all there is a setting up stage (telling the computer characteristics of a
window like colour and size). One or more windows can be established at the
start, in the application's initialisation section, or even ‘on the fly’ in response
to actions the user is carrying out. Then the computer has to be instructed to
open windows. Depending on what the program does not all windows will
appear at once when the app launches. Usually their arrival on the scene is in
response to a click or a menu selection.

Program WIND1 listed below puts a small window onto the screen using a
procedure PROCWINDOW and a function FNKWINDOW short for "make
window". FNMKWINDOW is the same in every listing and the format of the
DATA statements in PROCWINDOW is the same, although individual items of
data will vary according to the window's exact appearance.

Lines 2 makes the initialisation call, line 3 DIMensions two areas of memory,
the Block and another one called T which is to store the window title data in.
I have allocated 256 bytes for both, which is fine for most purposes but you
may need to increase the size of T later on. Q is a flag which will be TRUE
when the application is to quit either as a result of the user pressing Escape or
a message to shut itself down – more on this later.

REM Window
SYS "Wimp_Initialise",200,&4B534154,"A Window"
DIM B 256, T 256

43

Q=FALSE
PROCWINDOWS
!B=W1
SYS "Wimp_GetWindowState",,B
SYS "Wimp_OpenWindow",,B
REPEAT
SYS "Wimp_Poll",,B TO E
IF E=2 SYS "Wimp_OpenWindow",,B
IF E=3 SYS "Wimp_CloseWindow",,B:Q=TRUE
UNTIL Q OR INKEY-113
SYS "Wimp_CloseDown"
END
:
DEF PROCWINDOWS
RESTORE +1
DATA "*** Press Escape ***":REM Window Title
DATA 100,150,400,300:REM Bottom left coords plus width and height
DATA X,Y,X+W,Y+H,0,0,-1
DATA &FF001012 :REM window flags
DATA &03000207,&000C0103 : REM window colours
DATA 0,0,W,H : REM Work area
DATA &00000101 Title Flags
DATA 0,0,0,T,0,0,0
W1=FNMKWINDOW :REM WINDOW
ENDPROC
:
DEF FNMKWINDOW
READ $T,X,Y,W,H
FOR I=0 TO 84 STEP 4
READ A$
I!B=EVALA$
NEXT
T+= LEN $T+1
SYS "Wimp_CreateWindow",,B TO X
=X

WIND1 size=773 bytes, CRC=62317

A call to PROCWINDOWS is made in line 5. We'll come back to lines 6-16
shortly. In PROCWINDOW (singular) Basic’s data pointer is RESTOREd to the
next line with the command RESTORE+1. Lines 19-26 are DATA statements
giving information about window characteristics and line 27 gets a handle for
the window into W1 by calling FNMKWINDOW.

In this book we use eight DATA statements for every window definition, they
look more or less like this:

DATA Window Title : REM must not contain commas
DATA 300,350, 500,300 : REM bottom left X Y and width height in graphics

units
44

The Application Tutorial and Listings Book

A complete list of events is given in the appendices, here we only need to
know about events number 2 and 3. Event Number 2, open window, is rather
strange – why would we want to open a window if it's already opened by the
call in line 8? When you drag a window around the screen the window is
actually closed at the old position and reopened at the new position. This is all
done automatically by RISC OS but try removing line 11 and see what
happens.

Event Number 3, close window, is delivered to our application when the user
clicks on the close icon. So we respond by setting the Q flag to TRUE so that
the REPEAT..UNTIL in line 13 will activate. The application quits when
either the window is closed or the Escape key is pressed.

Incidentally, the statement UNTIL Q is the same as UNTIL Q=TRUE and the
same principal applies for any variable that is non-zero. TRUE has value of –1
in the computer's memory and you can also write IF Q THEN... as a
shorthand for IF Q=1 THEN...

The next program puts 10 windows on the screen of random colours and

46

The Application Tutorial and Listings Book

random dimensions and positions. You will need to add FNMKWINDOW
from the last program to complete the listing. Press Escape or close one of the
windows to quit.

SYS "Wimp_Initialise",200,&4B534154,"Random windows"
DIM B 256, T 256, W(9)
Q=FALSE
PROCWINDOWS
FOR J=0 TO 9
!B=W(J)
SYS "Wimp_GetWindowState",,B
SYS "Wimp_OpenWindow",,B
NEXT
REPEAT
SYS "Wimp_Poll",,B TO E
IF E=2 SYS "Wimp_OpenWindow",,B
IF E=3 SYS "Wimp_CloseWindow",,B:Q=TRUE
UNTIL Q OR INKEY-113
SYS "Wimp_CloseDown"
END
:
DEF PROCWINDOWS
FOR J=0 TO 9

47

4 Windows

TITLE (ICON) FLAGS

3

8 4& 2 1

2 1 0

4567

9 81011

Text
Sprite

Horizontally

centred

Vertically
centred

Half size
sprite Right

aligned

19 18 17 16

20212223

15 13 1214

27 25 2426

31 29 2830

0

1

2

3

6

7

4

5

with sprites)
(only affects icons

X

XX

X
X X X X
X X X X

X X X X

X X X X

X X X X

X=don’t care

1

1=must be set

Font handle
(if bit 6=1)

bits 24-31

Window Colours

There are usually 16 colours available for windows and icons, numbered 0 to
15. They can be altered and you can get more colours which we discuss in a

51

4 Windows

Icon Bar Icons – Text

The next program puts text onto the icon bar

SYS "Wimp_Initialise",200,&4B534154,"Iconbar Text"
DIM B 256, T 256, U 256, V 256
PROCMKICON(-1,0,0,160,50,&70000121,"They called me Mr. Iconbar",1)
REPEAT
SYS "Wimp_Poll",,B
UNTIL INKEY-113
SYS "Wimp_CloseDown"
END
:

Insert PROCMKICON

ICONBART size=404 bytes, CRC=36429

Style

In the previous program the icon’s width and height measured 380 × 50
graphics units. Until you've programmed a few applications, becoming
proficient with designing icons is largely guesswork. I started with 300 × 50
and found the text was cut off because I hadn't allocated enough width. Don't
be afraid to experiment. Press Escape, fiddle with the numbers and re-run the
program until you are happy.

There are guidelines as to how much space you should leave between icons,
distance from the edges of the window, colours and so on, prescribed in the
RISC OS Style Guide. It isn’t the Fashion Police for your applications but is
worth purchasing the book and observing the guidelines whererever you can
so that desktop software written by different authors all have the same feel.

This time Icon Flags are &70000121. Bit one is set to indicate the icon
contains text. Bit five is set for a filled background, and bits 28-31 are 7 (the
leftmost nybble in &700000121) which is the Wimp colour for black. Try
&B70000121 for black text on red. The left most nybble is B the hex code for
red, the next nybble is 7, the code for black. Or try &B7000125 to get a border
round the icon. Bit two is set for a border and the border's colour is the same
as the text colour.

68

The Application Tutorial and Listings Book

Icon Bar Icons – Text and Sprite

Programming an icons to display both text and sprite is rather tricky because
it's difficult to work out the effects you want, owing to so much information
being packed into a small space. What happens is that the justification bits
(that is bits 3, 4 and 9 in the Icon Flags) are used to control where the sprite
is in relation to text. The text is given in the A$ parameter of PROCMKICON as
before but this time the sprite's name is poked into memory at V, prefixed
with an 'S'. The last paramter in PROCMKICON is set to V and not 1 as before.
As if this wasn't complicated, you have to ensure the bottom left corner of the
icon, plus it's dimensions, are right so that everything works as expected.

The following program demonstrates. There is a built-in icon called SWITCHER

so this is prefixed with S (to give “SSWITCHER”) and put in memory at V in
line 3. The Icon Flags have bits 0 (text), 1 (sprite), 2 (border) and 3
(horizontal centre) set, plus the text colour of 7 (black) is specified in bits 24-
27. The height of the icon is 120 to ensure the sprite can be accommodated.
This gives the effect of the sprite above the text which is a tradition (look at
the left of your icon bar, your CD rom drive, SDFS drive and so on all have
the text ":0" below their icon).

SYS "Wimp_Initialise",200,&4B534154,"Iconbar Text and Sprite"
DIM B 256, T 256, U 256, V 256
$V="SSWITCHER"
PROCMKICON(-1,0,-20,380,120,&0700010F,"They called me Mr. Iconbar",V)
REPEAT
SYS "Wimp_Poll",,B
UNTIL INKEY-113
SYS "Wimp_CloseDown"
END
:

Insert PROCMKICON

ICONBARTS size=436 bytes, CRC=52561

The text is on a white background, even though we haven't set the
background colour bit. This always happens with text-plus-sprite icons, the
text is 'highlighted' in the colour specified in bits 24-31 of the Icon Flags,
which is zero, the Wimp colour for white. To work around this effect, set bits
24-31 to 1, which is the same shade of grey as the icon bar. Try &1700010B
for a more 'traditional' looking icon bar icon

69

5 Icons

Validation Strings – F parameter

Colours for the outline font are specified in the validation string as F followed
by two hexadecimal digits, the background colour (0-&F) and foreground
colour (0-&F). “F1B” for example would produce red text on grey (85%)
background. If your window work area was black you would use “F7B” to
ensure the text blended in nicely.

Radio Buttons

Sometimes there is a need to select one (and only one) option from a group of
items. Choosing one deselects the others. These are traditionally known as
radio buttons, after an old fashioned radio set where you pressed one button
to choose a preset station and it pushed out all the others.

SYS "Wimp_Initialise",200,&4B534154,"Radio Buttons Demo"
DIM B 256, T 256, U 256, V 256
Q=FALSE
PROCWINDOWS : PROCICONS
!B=W1
SYS "Wimp_GetWindowState",,B
SYS "Wimp_OpenWindow",,B
REPEAT
SYS "Wimp_Poll",,B TO E
IF E=2 SYS "Wimp_OpenWindow",,B
IF E=3 SYS "Wimp_CloseWindow",,B
IF E=17 OR E=18 Q=(B!16=0)
UNTIL Q OR INKEY-113
SYS "Wimp_CloseDown"
END
:
DEF PROCWINDOWS
RESTORE +1
DATA "Radio Buttons Demo",500,500,410,370
DATA X,Y,X+W,Y+H,0,0,-1

88

The Application Tutorial and Listings Book

Changing Icon Flags

Sometimes an application needs to change the appearance of an icon, other
than its text, after it has been set up in PROCMKICONS. We now introduce a
standard procedure PROCWRICONF (for WRite ICON Flags) using the system
call SYS "Wimp_SetIconState". The Block contains four works: B holds the
window handle, B+4 the icon handle, B+8 the EOR word and B+12 the clear
word. If you don't understand what's meant by EOR words and clear words,
go back and read the relevant section Chapter 3.

We said in the previous section that PROCWRICONT puts zero in the Block B+8
and B+12. As you may have realised, all that achieves is setting the clear word
and EOR word to zero but it saves passing excessive parameters when all we
want to do is change the icon's textual content.

The following program demonstrates how we can dynamically alter bit 22 (the
'icon greyed out bit') in an amusing way. PROCICONS set up the icons as usual.
Icon zero is a label. Icons one and two have Icon Button Type 1 which causes
the system to inform the program via a click event (event number 6) that the
pointer is on the icon – even though the user hasn't actually clicked a mouse
button. PROCCLICK examines the icon and if it's icon one, the most desirable
option, it's immediately greyed out. The clear and EOR words are B22, a
constant set to 1<<22 or &400000 in line 46.

If the pointer leaves the window, bit 22 of icon one's flags are reset (EOR
word 0, clear word B22). The pointer leaving the window is Wimp event
number four, detected in line 10.

So you have no choice but to try the least desirable option (!) and
PROCUPDATE is called which flashes up a suitable ‘corporatey’ message. This is
just icon three, set up in disguise (a label icon with grey text on grey
background) being made visible with a call to PROCWRICONF. The clear word
is –1 (i.e. zeroising all 32 flags) and EOR word of &80000121 (bits 28-31 dark

96

The Application Tutorial and Listings Book

T+= LEN $T+1
SYS "Wimp_CreateWindow",,B TO X
=X
:
DEF PROCMKICON(H,X,Y,W,D,F,A$,V)
$U=A$: RESTORE +1
DATA H,X,Y,X+W,Y+D,F, U,V,LEN A$+1
FOR I=0 TO 32 STEP 4
READ B$: I!B = EVAL B$
NEXT : U+= LEN A$+1
SYS "Wimp_CreateIcon",,B TO X
ENDPROC
:

Insert FNMKWINDOW, PROCMKICON

SQUARED size=1738 bytes, CRC=55710

The PAPER sprite takes up a lot of memory and there is a more efficient way of
drawing grids in windows which we will come to in the chapter on user
graphics.

Slider Icons Take 2

The next program demonstrates an easier method of adding slider icons to
your windows by employing user sprites.

SYS "Wimp_Initialise",200,&4B534154,"User Sprite Slider Icons"
DIM B 256, T 256, U 256, V 256
N=3 : REM no dials -1
DIM IV(N),IL(N),IU(N)
FOR I=0 TO N
IV(I)=RND(255) : IL(I)=0 : IU(I) = 255
NEXT
Q=FALSE
PROCSPRITES : PROCWINDOWS : PROCICONS
!B=W1
SYS "Wimp_GetWindowState",,B
SYS "Wimp_OpenWindow",,B
REPEAT

113

5 Icons

A$="Hello, "+A$+". The time is "+RIGHT$(TIME$,8)+". Your Window handle is
&"+STR$~W1

PROCREPORT(A$)
ENDPROC
:
DEF PROCWINDOWS
RESTORE +1
DATA Input text,200,200,600,200
DATA X,Y,X+W,Y+H,0,0,-1,&86001012, &01000207,&000C0103
DATA 0,0,W,H,&109,0,1,0,T,0,0,0
W1=FNMKWINDOW
ENDPROC
:
DEF PROCICONS
$V="R6,13"
PROCMKICON(W1,20,100,400,50,&8000012D,"Please type your name",0)
PROCMKICON(W1,20,50,400,50,&0700F12D,STRING$(30,CHR$13),0)
PROCMKICON(W1,450,50,100,100,&A700412D,"OK",V)
ENDPROC
:

Insert FNMKWIN, PROCMKICON, PROCRDICON, PROCREPORT,

PROCERROR

REPORT size=1490 bytes, CRC=26611

Text Windows

RISC OS can be made to display a text window in which normal VDU 4
characters can be displayed. You do this with SYS
"Wimp_CommandWindow", taking no parameters or one. With no
parameters, a text window is defined but not cleared. SYS
"Wimp_CommandWindow",B will default to a white screen with black text
with the text (control character terminated) at B displayed as the window title.
In both cases, no other desktop operations can be carried out until you click
the mouse or press a key. Also, if you have a high resolution monitor the

129

6 Error Handling, Reporting and Memorys

characters in the window are tiny! The next program demonstrates by blowing
up the text using PROCBIG(A$,X) where A$ is the text and X=8 or 4 for full or
half size characters, providing large-print alternatives to the previous
PROCREPORT and PROCERROR.

ON ERROR PROCERROR
SYS "Wimp_Initialise",200,&4B534154,"Reporting errors"
DIM B 256
PROCREPORT("B=&"+STR$~B)
...deliberate error...
SYS "Wimp_CloseDown"
END
:
DEF PROCREPORT(A$)
$B="Message from program"
SYS "Wimp_CommandWindow",B
COLOUR 176 : COLOUR63 : CLS
PROCBIG(A$,8) : A=GET
ENDPROC
:
DEF PROCBIG(A$,X)
COLOUR 255:COLOUR0
FOR J=1 TO LEN A$
?B=ASCMID$(A$,J,1)
SYS "OS_Word",10,B
130

The Application Tutorial and Listings Book

7 Dragging, Dropping and

Working with Files

In Chapter 5 we learned about icons and how to make an application react to
mouse clicks on icons – windows opening in response to ‘action’ buttons,
dragging graphical bars (slider icons) and so on. One of the features of RISC
OS that makes it so powerful and easy to use compared to other systems is the
ability to drag an icon, or more generally an object, onto another icon to
produce some result. For example, a file icon from a filer display that you pick
up and deposit – drag and drop – on to the icon bar.

As users of RISC OS we take this for granted. From a programmer's point of
view, however, it's a complicated topic which in this book we can only skim
the surface of. This chapter is an primer giving you a good enough
understanding to write small but very useful and fully functional applications,
and putting you in good stead to have a crack at the Messages section in The
Programmer�’s Reference Manual.

Drag–drop

Without trying to overload you with too much detail at this stage, whenever
your app might need to know something’s been dragged to it the system sends
Event Number 18 to the polling loop and Message Number 3 plus a whole
load of other information about the object in question. Again, Messages are a
complex topic and for our purposes all we need to know is the word at B+16
contains 3.

The word at B+40 holds the file type, &00000FFB or just &FFB denoting a
Basic file, for instance. If it was a directory B+40 is &1000. The filename starts
at B+44 and this is the full pathname of the file, for instance
SDFS::RISCOSpi.$. Documents.UserGuide.StarComms. The pathname is
zero-terminated (if you don't understand this go back to Chapter 3).

The next program installs a Pool Sprite icon called SWITCHER onto the icon
bar. There are a few lines REMed out which will be removed in due course to
demonstrate different aspects. The window and icons are set up as usual, two
icons for text and a third for a file icon which are padded out with CRs.

135

!BOOT.Resources.ScrapDirs.ScrapDir. In filing operations, such as our SYS
call to retrieve the size of the file, instead of typing a long-winded SYS
"OS_File",5,"!Boot.Resources.ScrapDirs.ScrapDir.SCRAPFILE" you just write
SYS "OS_File",5,"<WIMP$SCRAP>". The WIMP$SCRAP (or Wimp$Scrap or
wimp$scrap, the case doesn't matter) goes between the angular brackets.

RISC OS prior to 3.5 doesn't know about WIMP$SCRAP so it is necessary to set
it up with a one-line obey file:

SET WIMP$SCRAP <OBEY$DIR>.SCRAPFILE

Save it as !SETSCRAP and whenever you click it, the system is set up to save
SCRAPFILE in the directory where you put !SETSCRAP.

Before we get on to the advanced topic of save boxes (little windows which
allow you to type in a filename and drag an icon out to a filer) it allows our
applications to dump file output as SCRAPFILE without much programming
effort. The next program demonstrates.

ON ERROR PROCERROR
SYS "Wimp_Initialise",200,&4B534154,"Draw Polygons"
DIM B 1000, M 3000, T 1000, V 256, IV(2)

141

7 Dragging, Dropping and Working with Files

8 Demonstration Applications

This chapter puts together all we have learned so far with some fully
functioning applications. The standard RISC OS method of quitting an
application is via a menu option but since we haven’t learned about menus
yet, all the applications presented here are quit by pressing the Escape key.
(This does have the advantage that it’s possible to exit all applications with a
single keystroke!)

Roman Numerals

This application lets you convert between Arabic numbers and Roman
numerals. It works with numbers 1 to 5000.

REM Arabic-Roman
REM The Book of Application Stuff
ON ERROR PROCERROR
DIM B 1000, T 1000, V 50,V(13),R$(12)
RESTORE+1
DATA 1000,M,900,CM,500,D,400,CD,100,C,90,XC,50,L,40,XL,10,X,9,IX,5,V,4,IV,1,I
FOR X=0 TO 12:READ V(X),R$(X):NEXT
Q=FALSE
SYS "Wimp_Initialise",200,&4B534154,"Roman"
PROCWINDOWS : PROCICONS
REPEAT
SYS "Wimp_Poll",,B TO E
CASE E OF
WHEN 2:SYS "Wimp_OpenWindow",,B
WHEN 3:SYS "Wimp_CloseWindow",,B : Q=TRUE
WHEN 6:PROCCLICK
WHEN 8:PROCKEY
WHEN 17,18:IF B!16=0 Q=TRUE
ENDCASE
UNTIL Q OR INKEY-113
SYS "Wimp_CloseDown"
END
:

151

SYS "OS_SpriteOp",&13C,S,,1 : REM vdu o/p to screen
ENDPROC
:

Insert FNMKWINDOW, PROCMKICON, PROCRDICON, PROCWRICONT,

PROCREPORT, PROCERROR

BARCOPY size=5638 bytes, CRC=49879

The structure of Maestro files is detailed in Appendix E (File Formats) of the
Programmers Reference Manual. Briefly, Maestro files consist of blocks of data,
one of these blocks is a table of pointers to tables of events on each channel.
Different numbers of channels are assigned to different staves depending how
you have set up the Score > Staves in Maestro. An event is either a note or an
attribute.

A bar line is an attribute (a null followed by &20) and PROCFF (Fast Forward)
is used in PROCEXPORT to count bar lines up to the start bar and the channel
pointers are noted. A second call to PROCFF ‘winds on’ to the end bar, again
the pointers are noted. The events in between are copied to the end of the
relevant event table and the table of pointers is updated to reflect the increased
table size.

Draw Utilities

The next few applications manipulate Draw files in some way or another. The
structure of Draw files is discussed in The Book of Draw Stuff, available from
Drag ’N Drop publications, and will not be regurgitated here. Remember that
if you’re using RISC OS prior to 3.5 you need to set up SCRAPFILE as
described in Chapter 7. If mysterious errors appear it proably means the
application doesn't have enough memory to hold the Drawfile so increase the
value after DIM M, for example DIM M 14000 to DIM M 20000.

Stave Paper

You can print your own musical manuscript paper with this application.
Appearance of the staves can be controlled: number of staves, pre-drawn bar
lines, width, distance between stave lines and systems and the margins. The
icons are pre-populated to generate a standard 12-stave A4 sheet. Click the
'Render Draw' button to export to Draw where you can send to your printer,
PDF etc.

REM Stave Paper Version
REM The Book of Application Stuff

171

8 Demonstration Applications

DrawL

DrawL (short for Draw Language) is a Draw file decompiler. It converts Draw
files to a series of DATA statements which can be typed in, designed for
magazine listings like Drag ’N Drop. DrawL can process font tables, text and
path objects. Bitmaps and other types of objects are skipped.

Drag the Drawfile to Drawl’s icon bar icon. The filename is appended with
SRC (for SouRCe) which can be altered if required. Then click the Decompile
button to output to Edit. You then need to replace the DATA statements in
the second listing (which you can do by drag-saving out of Edit). The example
DATA statements produce the mountains picture shown.

REM Drawl Decompiler
REM The Application Tutorial And Cookbook
ON ERROR PROCERROR
SYS "Wimp_Initialise",200,&4B534154,"Drawl Decompiler"
DIM B 1000, T 1000, U 1000, V 256, M 20000
B21=1<<21 : Q=FALSE
PROCSPRITES : PROCWINDOWS : PROCICONS
REPEAT
SYS "Wimp_Poll",,B TO E
CASE E OF

186

The Application Tutorial and Listings Book

9 Menus

So far in this book our applications have consisted of icons which the user
clicks (or drags files to) to carry out some action. This is an entirely acceptable
way for the user to interact with the computer, and some computer platforms
rely heavily on this. The downside is the screen can be cluttered with icons.

That's where menus are useful. They're found on other platforms, of course,
and on RISC OS they’re basically lists of icons laid out vertically. As we know,
icons contain text and/or sprites. The user calls up this list of icons (a menu)
with the dedicated Menu mouse button, clicks or types some selection, and the
menu disappears. There are some RISC OS conventions like clicking select on
a sub menu keeps the main menu open but we shall cover these in due
course.

Like windows and icons, menus live in memory blocks and they must be
structured in a certain way. Unlike windows and icons, though, there's no help
from RISC OS. You don’t put the menu definition in the Block and make a
SYS call to set it up and get a handle for later use. Instead, we have to know
where in memory our menu data is stored and we then pass that to RISC OS
to open the menu, on demand.

Because of this bizarre lack of a standard, there are at least many ways of
setting up menus as there are RISC OS publications! Essentially menus are in
two parts: they have a 28-byte (7 word) Menu Header block and any number
of 24-byte (6 word) Menu Entry Blocks. The diagrams on the following pages
show what needs to go where. You will see the Menu Entry Block is very
similar to the Icon Block and the Menu Entry Icon Flags are identical to those
of a normal (window icon) but with some bits ignored (marked X).

Menus and Submenus

The next program demonstrates by allowing you to click the Menu button to
bring up a simple menu. Note the application doesn’t set up any windows, for
demonstration purposes it responds to a menu click anywhere on the desktop
and overrides other application’s menus (press Escape to quit). Usually you
would want to know which window the pointer was on and we will come to
that later.

209

Foreground or > Background. The demonstration also puts a tick against the
selected colour CL, which is initially set to 7 (black). PROCTICK(A,X) EORs a
one into the menu entry X whose header is at A. PROCMENUSELECT is
enhanced with a call to PROCTICK to remove the tick at is old position, set CL
to the new value from !B and another call to PROCTICK to mark the tick
against the new entry.

ON ERROR PROCERROR
SYS "Wimp_Initialise",200,&4B534154,"Colour Menu"
...

DEF PROCMENUSELECT
I$=STRING$(32," ")
SYS "Wimp_DecodeMenu",,N1,B,I$ TO ,,,I$
PROCREPORT("You chose option "+STR$!B+", '"+I$+"'.")
PROCTICK(N1,CL) : CL=!B : PROCTICK(N1,CL)
ENDPROC
:
DEF PROCMENUS
N1=N
RESTORE +1
DATA "Colour",T,0,0,&70207,160,40,0
PROCMKMENU(N1)
FOR IC=0 TO 15
Y=-(IC=0)*&100-(IC=15)*&80
PROCMKENTRY(N1, 28+IC*24, Y, -1, &101 + (IC<<28) + ((IC EOR 7)<<24), STR$IC, 0)
NEXT
PROCTICK(N1,CL)
ENDPROC

219

9 Menus

isn't like a traditional Basic program where we could draw the circles and
leave them there, we have to know the each circle's colour and radius every
time we redraw the window, which is why they are set up in the CX, CY and
CR arrays at the start and not in PROCPLOT. The icons are set up as before in
PROCICONS.

PROCGCOL is used to give a better choice of colours than the 16 desktop ones.
It uses SYS "ColourTrans_SetGCOL" which takes as its parameter the 24-bit
colour in bits 8-31 of R0 (&BBGGRR00).

Custom Icon Borders

With user graphics we’re at liberty to enhance the appearance of icons, as the
next program demonstrates. The complete details of the window are obtained
with SYS "Wimp_GetWindowInfo". The system returns the number of icons
in the window B+88 and the 32-byte (8-word) Icon Blocks are at B+92, B+124,
B+156... . PROCBORDER peeks the coordinates of the icon and calls
PROCROUND or PROCPLINTH to create icons on plinths or lozenges.

SYS "Wimp_Initialise",200,&4B534154,"Windows with user graphics"
DIM B 256, T 256, U 1000, V 100
Q=FALSE
PROCWINDOWS : PROCICONS
!B=W1
SYS "Wimp_GetWindowState",,B
SYS "Wimp_OpenWindow",,B
REPEAT
SYS "Wimp_Poll",,B TO E
CASE E OF

236

The Application Tutorial and Listings Book

The key press is detected with IF E=8 PROCKEY in line 15. PROCKEY

retrieves the key code from the Block. These codes aren’t INKEY values but
(with some exceptions) the Ascii value of the key pressed or special values for
control keys. You can use this program to find out the key codes or refer to
Appendix 4. If the key in question was 0-9 or A-F PROCCOLOUR deletes the
window definition and recreates it with the appropriate background colour.

Any unwanted key presses shoud be passed back to the system with SYS
“Wimp_ProcessKey”, , K where K is the value originally. retrieved from the
Block.

Text and Graphics Editors

The next three listings demonstrate how to implement user graphics for
rudimentary text and drawing applications.

Notepad

The next listing is for a simple text editor (notepad). A blank page of feint
ruled lines is presented and you click anywhere on the page to position the
caret and start typing. You may also use the arrow keys on your keyboard to

240

The Application Tutorial and Listings Book

FOR I=0 TO 12 STEP 4:READ I!L:NEXT: REM scaling table
O$="OS_SpriteOp"
SYS O$,&109,S : REM init sprite area
SYS O$,&10F,S,"224",,8,8,4 : REM create sprite in Mode 4
SYS O$,&13C,S,"224" : REM vdu o/p to sprite
VDU 23,224,223,223,223,0,251,251,251,0, 224
SYS O$,&13C,S,,1 : REM vdu o/p to screen
SYS "OS_Byte",20 : REM restore chars
ENDPROC
:

Insert PROCREDRAW, FNMKWINDOW, PROCMKICON, PROCERROR

UG5 size=1869 bytes, CRC=14367

256-colour sprites

If you wish to display a 256-colour sprites then you don't need to manually
poke in 256 entries in the ‘G’ palette table. RISC OS offers a short cut. Use
SYS “ColourTrans_GenerateTable”, 13, , –1, , G. (13 is Mode 13 and G is the
palette table address as before.)

Advanced Topics – 8 Bit Emulation

The following listing pulls together topics covered in this chapter with a RISC
OS desktop version of a ZX Spectrum game, Space Mines (copyright
acknowledged).

258

The Application Tutorial and Listings Book

11 Application Directories

All of the applications in this book have been self-contained, single listings.
This is for convenience and economy: you as the reader only have to worry
about one listing at a time and we can maximise the number of
demonstrations programs. As you know, RISC OS, applications usually live in
special folders, called application directories. They’re always prefixed with a
pling (!) – !Edit, !Paint etc. To open an application directory you hold down
the Shift key and double click.

We can get RISC OS to display a different application icon, in the filer, to
reflect what each application does. In Chapter 6 we used a small obey file to
set a more appropriate slot size and in Chapter 8 the label designer needed a
directory to store label definitions. In both cases the extra data had to be
stored, rather awkwardly, in the CSD. If they are kept privately, out of sight in
the application directory there’s no need to worry about manually setting the
CSD for each application.

ICONSPRITES <OBEY$DIR>.!SPRITES
WIMPSLOT -MAX 32768

RUN <OBEY$DIR>.!RUNIMAGE

(replaced with your

Basic application)

Sprite of your own design
name = application dir name

(lower case)

slot size for app
bytes or K

name of sprite file
in app directory

265

12 A General-Purpose Save-As

Dialogue Box

A situation frequently arises on RISC OS where we need an app to respond to
a file dragged to it, perform some operation on it, and output a result such as
a converted file.

A style has evolved in RISC OS where saving a file from an application is
done through a dialogue box. This is a small window whose title is usually
“Save as” and the window has a minimum of three icons – a file icon to
illustrate the file type of the file being saved, a writeable icon which starts out
as a suggested filename (Document1, File1 etc.), or contains the full pathname
of a previously-saved file, and finally an OK button.

The user can do one of three things to save the file. He or she can drag the
file icon to a directory viewer, press Return or click the OK button. The last
two actions are analogous to the "Save" option on other computing platforms.
However the filename displayed in the writeable icon must be a full pathname
otherwise an error message is usually shown “Please drag the icon to a
directory viewer” or suchlike.

The “Save As” appears either as a sub menu (sliding right off a “Save” menu
option) or after dragging a file to the application’s window or icon bar.

Unfortunately, the operating system provides no help in setting up this
window, despite its uniquity on RISC OS. (The Toolbox modules provide
some assistance but that is beyond the scope of this book.) So we have to pull
together our knowledge from Chapters 4, 5, 7 and 9 and be warned – it’s
rather tedious! The listing below demonstrates and you can use it as a
template for your own routines.

273

Appendix 2

System Calls

This appendix lists the SYStem calls used in the programs in this book, with a
brief summary only. Advanced information is available in the Programmer's
Reference Manual.

SYS “DragASprite_Start”,X,Y,“NAME”,B

Initiate dragging sequence. X options include 0 for standard dragging sprite
“NAME” as a greyed-out (dithered) sprite anywhere in desktop (save
operations) or &10 to limit to within window. Other parameters in Block at B.

SYS “Font_FindFont”, , “Name”, X, Y TO F1
Open a font for use, returning handle in F1. “Name” is font already in system
eg Trinity.Bold and X and Y are horizontal and vertical point sizes × 16 (192
is 12 pt).

SYS “Font_ListFonts”, , B, C, 256 TO , F$, C
Returns a font name installed in the system, B is the workspace, C is TRUE if
the end of the font list has been reached, FALSE otherwise, F$ is the font
name.

SYS “Font_LoseFont”, F1
Close font (previously opened with Font_FindFont) whose handle is F1.

SYS “OS_Byte”, A, X, Y
Osbyte call (a hangover from BBC Micro) equivalent to *FX A,X,Y where
A=Osbyte number and X, Y are the registers.

SYS “OS_File”, 5, F$ TO , , , , Z
Gets file size (bytes) of filename whose path is in F$ and stores in Z (note
quadruple comma before Z)

SYS “OS_File”, 8, F$
Creates a directory (in the CSD) with filename F$.

SYS “OS_File”, 10, F$, T, , M, N
Saves block of memory to file F$ of type T starting at M and ending at N
Note double comma after T.

285

Appendix 3

Hex Binary

Hex Binary Hex Binary
0 0000 8 0000
1 0001 9 0001
2 0000 A 0000
3 0011 B 0011
4 0000 C 0000
5 0001 D 0001
6 0000 E 0000
7 0111 F 1111

Logic Tables

The old value is the (hex) number in the leftmost column. The EOR, OR or
AND value is at the top of the next columns and the intersection is the new
value. For example, &8 EOR &7 = &F.

EOR
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A B C D E F
1 1 0 3 2 5 4 7 6 9 8 B A D C F E
2 2 3 0 1 6 7 4 5 A B 8 9 E F C D
3 3 2 1 0 7 6 5 4 B A 9 8 F E D C
4 4 5 6 7 0 1 2 3 C D E F 8 9 A B
5 5 4 7 6 1 0 3 2 D C F E 9 8 B A
6 6 7 4 5 2 3 0 1 E F C D A B 8 9
7 7 6 5 4 3 2 1 0 F E D C B A 9 8
8 8 9 A B C D E F 0 1 2 3 4 5 6 7
9 9 8 B A D C F E 1 0 3 2 5 4 7 6
A A B 8 9 E F C D 2 3 0 1 6 7 4 5
B B A 9 8 F E D C 3 2 1 0 7 6 5 4
C C D E F 8 9 A B 4 5 6 7 0 1 2 3
D D C F E 9 8 B A 5 4 7 6 1 0 3 2
E E F C D A B 8 9 6 7 4 5 2 3 0 1
F F E D C B A 9 8 7 6 5 4 3 2 1 0

291

Glossary

Acorn Small computer company based in Cambridge, UK, from the 1970s to
the 1990s. Produced the world’s first 32-bit, Arm-based desktop computer
(the Archimedes) after success with the BBC Micro.

Ampersand &. Used to indicate hexadecimal on RISC OS, eg &12349ABC.
Prefix. Other systems use different nomenclature for example 0x as in
0x12349ABC.

Archimedes World’s first desktop computer released in 1987 using an Arm
microprocessor. Famed for its speed and greenness owing to low power
consumption.

Arthur Operating system found on Archimedes and early ‘A’ series machines
of the 1980s. Sometimes called RISC OS 1 as it was the first version of the
OS before the term “RISC OS” had been invented (the first 'official' RISC
OS release was RISC OS 2).

Arm Microprocessor chip built into the Archimedes desktop computer,
subsequently powering RISC OS and millions of devices worldwide
including mobile phones Raspberry Pi’s.

BBC Micro 8-bit computer with a 6502 microprocessor produced by Acorn
starting in 1981. Given the BBC branding when it was chosen to be the
machine for an early UK Government drive towards computer literacy.
Spawned several models including the BBC B, Master and was the
forerunner to the Archimedes.

Bit Smallest unit of computer memory, either 0 or 1 (off or on, unset or set).

Block Area of memory or parameter block requiring data to be present in a
certain order before making a SYS call to get the system set up a window,
icon etc.

Byte Unit of computer memory equal to eight bits.

Clear Word Value ANDed (usually after being inversed with NOT first)
with a word to reset bits in preparation for setting bits with an EOR Word.

303

