

The Book of
 Draw Stuff

www.dragdrop.co.uk

Acknowledgements

The author is indebted to the writers of the many fine applications developed for RISC OS computers, without which this book would have been very difficult to produce.

Produced on RISC OS computers using EasiWriter, Draw, PostScript3 printer driver, and the OKI-C321 colour laserjet printer.
© 2015 (with the exception of Appendix 3) Chris Dewhurst

ISBN 978-1-78280-501-4

First published 2015 by
Independent Publishing Network (IPN)
www.ipubnet.co.uk
Printed and bound in Great Britain by Drag 'N Drop, Burrsville, Essex UK
www.dragdrop.co.uk dragdrop@dragdrop.co.uk
Typeset in 12/13 Plato.

Contents

Contents 3
Introduction 4
Know your Mouse 5
1 Using Draw
The Unit Square 6
Projects (1) 7
Scaling (1) 8
Projects (2) 10
Scaling (2) 11
Position and Alignment 12
Projects (3) 16
Grids 18
Cross Hatching 24
Format Painter 25
Projects (4) 26
Designing Fonts 27
Projects (5) 30
2 Programming Draw
Draw file Structure 36
Notes on the listings 40
Grid Generator 41
Text Effects 44
Rotated text 49
Curved text paths 53
Table Maker 56
Working with curves 60
Easier Circles 62
Concentric Circles 63
Colour Graded circles 66
Curved Boxes 67
'Gons, Stars and Cogs 72
More Draw Colours 79
More Dash Patterns 84
Converting Foreign Files 88
Path Merger 94
Appendix 1-!EasyCSD A1-1
Appendix 2 -! PathMerger A2-1
Appendix 3 - Draw reference A3-1

The Unit Square

For accurate diagrams the unit square is the most important element. It may not be used by itself but it's an important building block.

Open a Draw document. Click menu > Grid $>$ Lock or press $\mathrm{Ctrl}+\mathrm{Shift}+\mathrm{F} 1$. This locks to the default grid of 1 centimetre with 2 subdivisions.

\square
Select the rectangle tool and select-click on the paper. We said above the grid is 1 cm with 2 subdivisions so one move of the mouse corresponds to $1 \mathrm{~cm} \div 2=0.5 \mathrm{~cm}$.

Drag out a square shape, 2 grid steps horizontally and vertically. This is your unit square, measuring $1 \mathrm{~cm} \times 1 \mathrm{~cm}$.

OSelect the circle tool. This time drag out a circle 1 step horizontally and vertically. This is a unit circle with diameter 1 cm . It should fit inside the unit square.

Unit squares and unit circles (viewed at default 1:1 magnification).

Scaling (2)

To reduce or enlarge a drawing (object) to a known size, scale a unit square to the known size. Select the square and the object, group, and justify to Top and Left.

Ungroup the object and square and select the object. Choose Menu > Transform > Magnify. For enlargements type 1.1 in the box and repeatedly select click to enlarge by 10% until the bounding box of the object co-incides with the square. To reduce enter 0.9 in the box and repeatedly select click to reduce by 10%. (For fine tuning use 1.01 for 1% enlargement, 0.99 for 1% reduction.)

Grids

Draw a unit square. Use the line tool to draw a horizontal line following the top (or bottom) of the square so that you have a line 1 cm long. (As it is in exactly the same position as one side of the square, you may wish to change the line width and/or colour to make it stand out from the side of the square.)

Delete the unit square to leave the 1 cm line. Decide how many squares are to go along the top side of your grid, at 0.5 cm intervals. Multiply them, for example 20 squares x $0.5 \mathrm{~cm}=$ 10 cm . Lengthen the unit line to 10 cm with the Transform > Xscale option.

Leaving the line selected press Ctrl+C. Draw makes a copy of the line at an offset determined by the grid division $(0.5 \mathrm{~cm})$

Format Painter

Draw sets the line style, fill colour etc the same as the last object on its 'stack'. For example, set the required fill colour for one part of the drawing (Menu > Style > Fill colour)

Make a copy of the filled shape to bring it to the top of the 'stack'.

Adjust-select the other shapes to be filled in the same colour and choose Style > Fill colour > OK

Delete the extraneous copy. Format paint other parts of the cartoon if required

Designing Fonts

Fonts sizes are measured in points and there are 72 points to the inch so it makes sense to work in inches. Choose Grid > Inch > Spacing >1 and Subdivision 2. Draw a 1 inch unit circle and set fill to black. Make a copy, magnify 0.7 and set fill to white. Group the two circles and justify to centre middle.

This is a basic ' O ' shape at 72 points (1 inch).

Make a copy and set the outline colour to light grey. This is the guideline for other letters based on the $\mathrm{O}(\mathrm{C}, \mathrm{G}, \mathrm{O}$ and Q$)$.

Draw a unit square. Set Grid > Inch > Spacing > 72. Each grid position is 1 point apart which is good enough for most purposes at this scale (letters can be shrunk later on making any slight unevenness less noticable). Within the unit square draw some rectangles which are 0.2 which will also act as guidelines.

Group a rectangle and the O shape and justify to centre bottom.

Select the curved path tool and choose a thicker line width in black. Trace around the guidelines to make the Q . It can be

Draw file Structure

We will look at a word-by-word memory dump of a Draw file consisting of just a unit square. The left hand column shows the offset from the start of the file in hex, the four bytes making up the word, and an Ascii representation if appropriate.

The first word of a Drawfile spells out "Draw" in Ascii characters. In computing, when talk about a word we mean a collection of a certain number of bits, rather like a word in English is a collection of letters. A byte is a word of 8 bits but a convention has been established in RISC OS where word means a group of four bytes (32 bits).

0000	44	72	61	77	Draw

In hexadecimal the Ascii characters for "Draw" are \&44, \&72, \& 61 and $\& 77$ in hex. So every Drawfile begins with these four numbers. The next two words are:

0004	C9	00	00	00	É...
0008	00	00	00	00

Words at offset \&0004 and \&0008 concern which version of Draw which created the file. They aren't the same as the numbers which appear on the "About this program" window. They are currently fixed at 201 ($\& C 9$) and zero and you should use the same version in your programs.

In RISC OS bytes are stored low byte to high byte or low byte first so the 201 ($\& \mathrm{C} 9$) appears at position $\& 0004$. (In other computing worlds data is stored the other way round, high byte to low, so the \&C9 would appear at position \&0007.)

Words three to five contain the name of the program which created the Draw file. This could be Draw itself or the name of the application which output the file, which is up to twelve characters in length padded with spaces (\&20).

000 C	44	72	61	77	"Draw"
0010	20	20	20	20	
0014	20	20	20	20	

Finally a SYStem call is made to save the Draw file. OS_File with $\mathrm{R} 0=0$ saves the data and a *SetType ensures the file is correctly filetyped so you can double click on it to open it in Draw.

Notice that the entire grid is just one object and it would take much longer to create by hand in Draw as in the first section of this book.

```
    10 REM Grid Generator
    20 REM The Book of Draw Stuff
    30 REM (c) Drag 'N Drop 2015
    4 0
    50 DIM mem'% &10日0
    6 0 \text { ptr'=0}
    70 unitsperinch% = 46080
    80 xlength=4
    90 ylength=4
    100 size=0.1
    110 PROCheader
    120 ptr1/=ptr'/:REM record current pointer position so can record
object size later
    130 PROCwrite(2);REM object 2, path object
    140 PROCurite(0):REM object size - dummy value for now to be
filled in later
    150
    160 REM object boundary box
    170 FOR x=0 TO 3:PROCWrite(0) : NEXT
    180
    190 PROCurite(-1):REM fill=none
    200 PROCwrite(0);REM outline coloum=black
    210 PROCwrite(0):REM line width=thin
    220 PROCwrite(0):REM path style options (see PRM4-468)
    230
    240 FOR gx=0 T0 xlength STEP size
    250 PROCwrite(2)
    260 REM move to (gx,0)
    270 PROCurite(gx*unitsperinch/%)
    280 PROCwrite(0)
    290
    300 PROCwrite(8)
    310 REM draw to (gx,ylength)
    320 PROCurite(gx*unitsperinch/%)
    330 PROCwrite(unitsperinch/%qylength)
    346 HEXT
    350
```


Curved text paths

So far our text has followed straight lines. We can generate curved effects e.g. where the text follows an arc. We have to write out the text letter by letter, using some basic trigonometry to adjust the position and angle of each character, as the following program demonstrates.

```
    1 0 \text { REM Text on arcuate paths}
    20 REM The Book of Draw Stuff
    30 REM (c) Drag 'N Drop 2015
    4 0
    50 DIM mem%/% $1000
    ptr%=0
    70 unitspercm%=18140
    80 unitsperpoint/% = 640
    90 xcentre%=10*unitspercm/%
    100 ycentre%/=18*unitspercm/
110
    120 angle=0
    130 5cale%=1*810000
    146 fontsiz%=12
    150 radius=5*unitspercm/
    160 start=0
    170 end=180
    180 text$="THE RUICK BROUH FOX JUMPS"
    190 step=(start-end)/LEHtext$
    208 angle=start
210
22月 PROCheader
230 ptr1%=ptr%:REM record object size later
249 PROCur ite(0);REM Object 自 font table
250 PROCurite(0):REM object size dummy value to fill in later
2 6 0 ~ P R O C u r i t e s t r i n g ( C H R \$ 1 + " H o m e r t o n . M e d i u m " + C H R \$ 0 , 0 ) ~ : R E M ~ I D ~ 1 ~ + ~
font name
    270 ptr1%!(mem%+4) = ptr%/-ptr1%:REM fill in object size
    280
    290 FOR let%=1 T0 LEN text$
    306 IF MID$(text$,let%,1)=CHR$32 THEN angle=angle+step;HEXT
    310 ptr1%=ptr%
    320 PROCurite(12):REM object 12, transformed text
    330 PROCurite(0);REM object size dummy value to fill in later
    340 FOR x=0 T0 3:PROCurite(0):HEXT
    350 REM transformation matrix
    366 letangle=angle
    370 PrOCurite(COSRADletangle*5cale%/)
```


Table Maker

This program is a simple table generator which combines our skill and knowledge from the preceding two chapters (text and lines). You are prompted for the name of a CSV file (Comma Separated Value, filetype \&DFE) file in the current directory. The CSV should have the standard RISC OS line separator, CHR $\$ 10$.

The file is formatted into a Draw file called Table. CSV files are exported by almost all modern spreadsheet applications. An example is:
Hame, Draw colour, HTML code, '/Red, \%/Green, '/Blue

White, \&FFFFFF日0, \#FFFFFF,100,100,100

which results in

Name	Draw colour	HTML code	\%Red	\%Green	\%Blue
Black	\&00000000	\#000000	0	0	0
White	\&FFFFFF00	\#FFFFFF	100	100	100
Red	\&0000FF00	\#FF0000	100	0	0
Lime	\&00FF0000	\#00FF00	0	100	0
Blue	\&FF000000	\#0000FF	0	0	100
Yellow	\&00FFFF00	\#FFFF00	100	100	0
Cyan	\&FFFF0000	\#00FFFF	0	100	100
Magenta	\&FF00FF00	\#FF00FF	100	0	100
Silver	\&C0C0C000	\#C0C0C0	75	75	75
Gray	\&80808000	\#808080	50	50	50
Maroon	\&00008000	\#800000	50	0	0
Olive	\&00808000	\#808000	50	50	0
Green	\&00800000	\#008000	0	50	50
Purple	\&80008000	$\# 800080$	50	0	50
Teal	\&80800000	$\# 008080$	0	0	0
Navy	\&80000000	\#000080	0		0

For every item in the CSV file a cell (rectangle) is generated

The move points are white squares and the associated control points are grey (point 1-1 and 1-2 being the control points for the first curve, 2-1 and 2-2 for the second and so on.)

Easier Circles

Four curves an accurate way of making a circle but it can be done perfectly with just two curves as shown: Control points are always at a distance of the radius plus a third away from the top and bottom of the circle.

A circle made of two curves
Put another way, a third of the radius inward from the edges of the boundary box which encloses the circle. There is probably

Some boxes with nicely rounded corners (top) and used with path merging and masking to give a photo rounded corners.

'Gons, Stars and Cogs

Polygons, stars and cogs are three examples of shapes which would be nearly impossible (and certainly take a very long time) to construct accurately by hand in Draw.

But with a little trigonometry and using our knowledge of the Drawfile format they are easy to do in BBC Basic. In all cases we 'sweep' round a circle (from 0 to 360 degrees) joining several points on the circumference of the circle. In the case of stars and cogs some points are joined to the circumference of an imaginary inner circle.

The following diagrams show pictorially how this is done. Angles are in degrees because this is what we are all familiar with. But as we discussed in a previous chapter they have to be converted to RADians when calculating SINes and COSines in BBC Basic.

Polygons

Pentagon sides $=5$	xcentre $=5$, ycentre $=5 \mathrm{~cm}$ radius $=2 \mathrm{~cm}$	step $=360 \div$ sides $=360 \div 5=72^{\circ}$
Step 1.	Step 3.	
Move to (xcentre,ycentre + radius)	Draw to (xcentre + radius \star SINangle,	
	ycentre + radius ${ }^{\star}$ COSangle)	

Step 4.
Add step to angle
$72+72=144$
Step 5.
Repeat steps 3 and 4 until all sides drawn.

Constructing Polygons

Converting Foreign Files

You may have found drawings on the internet which aren't compatible with Draw. They are stored in a format used by other computers and a common example is the Windows Meta File (WMF).

The quality of these files isn't high quality as Draw files because there are no curves. Circles and the like are actually made up of lots of little straight line sections. But they are arguably more efficient because only half words (2 bytes, 16 bits) are needed to store co-ordinates. WMFs are used in Microsoft Word and Powerpoint, as well in numerous clip-art collections on CD-Rom so it's useful to be able to translate them into Draw format.

This chapter lists a simple WMF-to-Draw converter. It can convert polygons, correctly translating line width, line and fill colours. This is sufficient for most purposes. Sometimes, though, overlaid polygons will be in the wrong colour but you can easily edit the resultant Drawing, called WMFDrawing.

Like Draw, WMFs have a header followed by a number of objects. The header begins with a 'magic number' ($\&$ 9AC6CDD7) identifying it as a WMF, rather like Draw begins with $\& 77617244$ except less memorable: the first word of Draw are the Ascii characters D r a w.

The only useful piece of information in the header is at offset $\& 0 \mathrm{E}$. It gives the number of Metafile units per inch, for example 1440. Thereafter coordinates are quoted in these units, and to translate to Draw we divide every co-ordinate by the Metafile units per inch and and multiply by Draw units per inch $(46,080)$.

The program knows about six types of WMF object. The main loop scans through the file picking up the object type and size. The size is the number of halfwords the object occupies in memory. If the type is not recognised the program skips forward to the beginning of the next object.

Object types \&20B concerns the origin and PROCorigin extracts and stores in $o x \%$ and $o y \%$ in the program. Object \& 20C specifies the dimensions of the drawing (ex\% and ey\%) rather like the boundary box in Draw.

We need $o x \%$ and $o y \%$ to add to any coordinates. Y

Path Merger

Sometimes it is desirable to join two or more shapes to form a single path. For example, if you tried to design a typeface (in the Designing Fonts chapter) you will have realised that some letters had inner shapes which had their fill colour set to white which then meant the letter could really only be placed on a white background (or of the same colour as the fill).

Of course, the Move tool in Draw can be used to build up a single path of several subpaths but only if you were constructing a shape from scratch.

The below dump, beginning at offset $\& 80$ into the Draw file, shows two objects - both simple, one-section straight lines.

0080	02	00	00	00	Object 2 path
0084	44	00	00	00	Size $=\& 44$ bytes
0088	E0	46	00	00	Bounding
008C	E0	46	00	00	
0090	60	62	01	00	box
0094	E0	46	00	00	
0098	FF	FF	FF	FF	Fill=none
009C	00	00	00	00	Outline=black
00A0	00	00	00	00	Linewidth=thin
00A4	42	00	10	20	Path style
00A8	02	00	00	00	Move to
00AC	E0	46	00	00	$\mathrm{X}=1 \mathrm{~cm}$
00B0	E0	46	00	00	$\mathrm{Y}=1 \mathrm{~cm}$
00B4	08	00	00	00	Draw to
00B8	60	62	01	00	$\mathrm{X}=5 \mathrm{~cm}$
00BC	E0	46	00	00	$\mathrm{Y}=1 \mathrm{~cm}$
00 C 0	00	00	00	00	End path
00C4	02	00	00	00	Object 2
00C8	44	00	00	00	Size $=\& 44$ bytes
00CC	E0	46	00	00	Bounding
00D0	C0	8D	00	00	
00D4	60	62	01	00	box
00D8	C0	8D	00	00	
00DC	FF	FF	FF	FF	Fill=none
00E0	00	00	00	00	Outline=black
00E4	00	00	00	00	Linewidth=thin

Vintage travel poster, designed using techniques in the first half of the book.

Graded and rotated text from the "Text Effects" chapter

Graded and random circles from the Working with Curves chapter.

"BEACH" was typed in 72pt Homerton Bold, converted to a path, ungrouped, the arrow drawn around them, and then the Drawing was imported into the path merging program. A graded-colour rectangle (see Projects (4) chapter) was then produced and put behind the letters/arrow shape to create the finished effect.

yellow	aqua	indigo	blanched almond	slate gray	
olive	dark cyan	blue violet	bisque	mint cream	
khaki	teal	royal blue	beige	sea shell	
dark khaki	dark slate gray	blue	antique white	papaya whip	
pale golden red	light sea green	medium blue	pink	old lace	
golden red	medium sea green	dark blue	light pink	linen	white
dark golden red	medium aqua mar	navy	hot pink	lavender blush	white smoke
gold	sea green	midnight blue	deep pink	misty rose	gainsboro
orange	spring green	light sky blue	pale violet red	peach puff	light grey
dark orange	medium spring gr	sky blue	medium violet rec	navajo white	silver
orange red	dark sea green	light blue	orchid	moccasin	dark grey
light salmon	pale green	dodger blue	magenta / fuchsia	rosy brown	grey
salmon	light green	deep sky blue	violet	tan	dim grey
dark salmon	lime green	corn flower blue	plum	burly wood	black
light coral	lime	steel blue	thistle	sandy brown	snow
indian red	forest green	cadet blue	purple	peru	azure
coral	green	powder blue	medium orchid	chocolate	ivory
tomato	dark green	aqua marine	dark orchid	sienna	honeydew
red	green yellow	pale turquoise	dark violet	saddle brown	ghost white
crimson	chart reuse	medium turquoise	dark magenta	light yellow	alice blue
firebrick	lawn green	turquoise	medium purple	light golden rod y	floral white
brown	olive drab	dark turquoise	medium slate blue	lemon chiffon	lavender
dark red	dark olive green	light cyan	slate blue	corn silk	light steel blue
maroon	yellow green	cyan	dark slate blue	wheat	light slate gray

Colour chart generated by the listing in the More Draw Colours chapter. Export the desired coloured squares and apply to your own shapes as described in the Format Painter chapter.

The Book of Draw Stuff for RISC OS computers

Whether you are a user or programmer of RISC OS, have an old RiscPC or new Raspberry Pi, this book is for you.

The first section builds on techniques in the User Guide: creating grids quickly, accurate positioning of objects, hatching, graded backdrops and format painting, with projects to design CD labels, fonts and a vintage travel poster.

The second section examines the structur Draw files and shows how you can generate comple dia and repetitive or complicated patterns, just using BBC b sic . There are listings to generate graded text, tables fror C Mles, a Windows Metafile (WMF) converter, extra corvs and dashed patterns, producing text along curved ith a a utility to merge paths.

Both Draw and BBC Basic Xaresupplied free with every copy of the operating syster a dy is oook is for everyone using RISC OS 3.10* and ab ve \star Subject to memory limitatio on earlier machines.

