

Copyright © Drag 'N Drop 2017
Produced on RISC OS computers

This issue has been blessed with
contributions from the following people:

Anthony Bartram (RISC OS Sound
System)

Paul Dunnington (Python Primary School)
Christopher Dewhurst (everything else)

The views expressed in this magazine are
not necessarily those of the editor.

Alternative views are always welcome
and can be expressed by either writing an

article or a short editorial.

All articles and advertisements are
published in good faith. No materials in

this publication are meant to be
offesnsive or misleading. If you come

across something you believe is either of
the above please contact the editor using

the details below.

Contact Information
Editor: Christopher Dewhurst
Email: editor@dragdrop.co.uk

www.dragdrop.co.uk

I hope you had a good
Christmas and start to 2017,
unlike your editor who was
down with the flu!

Welcome to this 30th edition
of Drag 'N Drop, packed with
stuff to learn about your
computer – including the start
of an exciting new series on
the RISC OS sound system,
resurrecting old modules and
(if your head is hurting by the
end of that) a type-in arcade
game.

Along with your favourite
magazine there are some new
products in the pipeline from
Drag 'N Drop, the first of which
is being released at this year's
South West show so see you
there!

Christopher Dewhurst

Editorial 1

How do I....? 2

News 3

RISC OS sound
system 5

ConvText 11

Module Auto 32 bitter
15

Mop Tops review 20

Sid Slug 21

Armcode for
Beebsters 28

DIY pointers 30

Python Primary
School 33

Tracing outlines 39

Module saver 41

Drag'N Drop Winter 2017 | www.dragdrop.co.uk | facebook.com/dragdropmag Page 1

http://www.dragdrop.co.uk
http://facebook.com/dragdropmag

How do I...?
...get the BBC Basic prompt?

To get the BBC Basic prompt press F12
and type *BASIC and press Return. You

can change the screen mode with MODE n
where n is a number e.g. MODE 7 or MODE 0.
Type AUTO for automatic line numbering. Press
Escape to stop and type SAVE "myprog"
followed by Return to store myprog on hard disc.

To return to the desktop type *QUIT.
Programs listed in Drag 'N Drop are assumed to
work on all machines with RISC OS 5 e.g.
Raspberry Pi, unless otherwise stated.

...open a Task window?
Menu click over the Raspberry icon on the right
side of the iconbar and select click on Task
window. Or press Ctrl + F12.

You may need to reserve more memory for
the task in which case adjust-click on the
Raspberry icon and under Application tasks click
and drag the Next slide bar out to the right.

You can also type programs in a task window,
hold down Ctrl and press F12. You can't use the
cursor editing facility or change MODE, however.

*BASIC
ARM BBC BASIC V
version 1.54
Starting with 651516
bytes free
>

Task window

You can also program and run Basic programs
from the desktop. Double-clicking on the filer

icon runs it, holding down Shift and double
clicking loads it into your text editor.

...select the currently selected

directory?
Articles may tell you to set the CSD (currently
selected directory). Just click menu over filer
window and choose Set directory ^W or you can
use the !EasyCSD application presented in Drag
N Drop 6i1.

...open an Applcation Directory?
Application directories begin with a ! called
'pling'. Hold down shift and double click select to
open the directory.

Drag'N Drop Winter 2017 | www.dragdrop.co.uk | facebook.com/dragdropmag Page 2

http://www.dragdrop.co.uk
http://facebook.com/dragdropmag

News and App Updates
South West show
The Webbington Hotel
overlooking the Somerset levels
is again host to another exciting
RISC OS show in the South West
of England on 25th February
2017. Doors open 10.30am,
tickets just £5.00. With so much
happening in the RISC OS world
it's something not to be missed.
Get your copy of Drag 'N Drop for
£3.00, or why not buy the all 30
issues on a USB memory stick.

20th Century Fonts
We're excited to announce the
release of a super new CD-Rom,
a collection of PD fonts for RISC
OS to blow all other collections
away. Launch price £13.00
(including printed manual if you
buy at the show). Whilst PD fonts
aren't 'perfect' (you would have to
spend many hundreds of pounds
for 'professional' typfaces) they
are good enough for everyday
purposes. Supplied in Type 1
format too for use on other
platforms.

RISC OS 2016 awards
Get your mouse pointer out and
get along to http://
www.riscosawards.co.uk/
vote2016.html. Vote for in what, in
your opinion, were the best (and
worst) RISC OS products during
2016. Be sure to elect your
favourite magazine as the "Best
publication or offline resource"
please!

Risc Digital Sound

Processor
Making sounds has always been
tricky on RISC OS because it
involves writing voice generators.
However this is all set to change
with Tony Bartram's RDSP
module. It extends the SOUND
statement and even adds BBC
Micro-style ENVELOPEs meaning
a huge variety of audio effects
can be achieved with simple
Basic commands. An alpha (test)
version can be downloaded from
www.amcog-games.co.uk/
downloads/rdsp-alpha1.zip

Mop Tops
We've reviewed Amcog's latest
game in this issue but as it was
going to press we heard that its
author, Tony Bartram, has
improved the animation and
added more levels. Price just
£9.99 from !PlingStore or on DVD
at shows.

GCC 4.7.4
The free C and C++ compiler for
RISC OS has been updated to
run on the Raspberry Pi 3 and
can be downloaded from
www.riscos.info/index.php/GCC.

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 3

http://www.riscosawards.co.uk/vote2016.html
http://www.riscosawards.co.uk/vote2016.html
http://www.riscosawards.co.uk/vote2016.html
http://www.amcog-games.co.uk/downloads/rdsp-alpha1.zip
http://www.amcog-games.co.uk/downloads/rdsp-alpha1.zip
http://www.riscos.info/index.php/GCC
http://dragdrop.co.uk
http://facebook.com/dragdropmag

RISC OS Sound System
When RISC OS first appeared
in the 1980s it provided eight
channels for playing back 8-bit
samples (or waveforms) in
stereo.

With the advent of the RISC
PC in the 1990s this was
upgraded to 16 bit audio.
However, the hardware interface
has a only single direct memory
address handler which provides a
callback to populate the sound
memory.

(If you're not sure what a
callback is, think of passing
parameters, or arguments, in
procedures in BBC Basic. A
callback is an argument except
the argument itself is another
piece of code and not just a data
value.)

Therefore, a module has been
provided within RISC OS so that
the output to the 16-bit sound
handler can be shared. Hence,
this module is called Shared
Sound.

A code example to use Shared
Sound is provided below. It

enables a 16-bit WAV file to be
played through Shared Sound as
well as generating simple BBC
Micro-style tones.

This forms a very simple
synthesiser written in a small
amount of assembly code.

Once you have typed in the
listing and checked for errors,
save it. Before running it, observe
the followign points:

l ensure you have set the 'next'
Wimp slot large enough to hold
the DIMensioned Basic memory
block, at least one megabyte. (Do
this by dragging the slider in the
Task display. Otherwise you will

get a "No room for this DIM"
error.)
l set the directory to the same
location as the audio sample to
be loaded (it must be a WAV file,
if you haven't got one then there
are plenty available for free on the
internet)
l run the example by double
clicking it and not executing it
from the task window.

The program has a number of
simplifications for clarity including:

l No support for systems that will
not play audio at 44khz. Note,
though, that modern RISC OS
systems support 44khz audio
including the Raspberry Pi,
ARMX6 as well as RPCEmu so
generally you need not worry
about that.
l No error handler for shared
sound.
l No support for other shared
sound resources running at the
same time as this example is
designed to run as a single

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 5

http://dragdrop.co.uk
http://facebook.com/dragdropmag

ConvText
ConvText is a simple but
highly-customisable
application which runs on the
desktop to help with text file
conversion.

It may be used to strip line
feeds, alter line feed/carriage
returns (such as when importing
text from a PC) and anything else
you wish by adding to its library of
routines.

There are three listings, The
first generates the application
directory (!ConvText),
sprites, Boot and Run files.
The second is the main
program which should be saved
inside the application directory,
!ConvText.!RunImage.

The third listing is in fact a
series of mini Basic programs -
the library routines - and they
should be saved as
!ConvText.Lib.Routine where
Routine is the name e.g.
ForceLower.

To use, double click and it will
install itself on the icon bar. Select
click over the icon to bring up

details of the currently installed
conversion routine.
To convert a text file just drag to
!ConvText's icon. The converted
file is saved with the same name.

To install a new library routine,
menu click over the iconbar icon
and select Show Library. A filer
window opens on the library. Drag
one of them to !ConvText's
iconbar icon to install.

Installing new routines
Each Basic file in the Lib directory
is a FuNction defintion -
DEFFNchange(in%). in% is the 8-
bit alue of the character at the

current position in the file. An
operation is performed on in%, for
example
out%=in%
IF out%=ASC":" THEN out%=10
=out%
checks to see if it's a colon and
substituting a line feed.

If one character is subtituted
for two, three or even four bytes,
then the out% should be the
multi-byte value, for example &
0A0D to output a line feed and
carriage return in place of a line
feed.

A special case is made for
characters to be ignored
(removed) where out% should be
set to -1 (&FFFFFFFF in hex).

ConvText Makefiles
 10REM ConvText Makefiles
 20REM (c) Drag 'N Drop 2017
 30
 40app$="!ConvText"
 50OSCLI"CDIR "+app$
 60PROCcreatesprites
 70PROCcreatefiles
 80END
 90
 100DEF PROCcreatesprites
 110DIM H% 500:!H%=500:H%!8=&10

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 11

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Module Auto 32-Bitter
In the last instalment of the
Module Surgery series (way
back in the Winter 2016 edition
of Drag ’N Drop) we looked at
updating 26-bit modules to run
on the Pi by editing the code in
StrongEd.

To take the tedium out of doing
this and reduce the possibility of
errors we present a small
application to do it for you,
!Auto32.

Please note that it's not
guaranteed to magically transform
your ancient Archimedes module
from B.C. 6000 into a fully
functioning modern piece of
software but many 26-bit modules
can be fixed using !Auto32.

There are two listings, the first
creates the application
directory, Boot and Run
files and application
sprites.

The second listing is the
program which does all the hard
work and should be saved as
!RunImage inside the !Auto32
directory.

To use the application, double-
click on !Auto32 and a window
willappear. We'll discuss the three
options beginning "Header..." in a
minute but simply drag your
module onto the window. A
confirmation will be issued saying
the module will be saved in the
same location with '32' appended
to the filename.

To quit the application simply
click on its close icon.

How Auto32 works

As you will recall from last
time, in earlier (26-bit) versions of
RISC OS you could get away with
a module header of only 28 (&18
in hex) bytes if the module didn't
supply any extra SWI calls.

On RISC OS 5 (32-bit)
however, a larger header size of
&34 is compulsory. This is
illustrated in figure 1, repeated
from last time but with the
addition of red lines showing
header sizes in 26-bit modules.

All 26-bit modules tested with
Auto32 have header sizes of &18

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 15

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Review
Product: Mop Tops
Category: Gaming
Price: £9.99 (PlingStore), also
available on DVD at shows
Supplier: Amcog games
www.amcog-games.co.uk
After a severe shortage of new
games for RISC OS we already
have four in less than two
years from Amcog.

Having enjoyed Tony Bartram's
Overlord, Legends of Magic and
Xeroid I looked forward to Mop
Tops. It's a Lemmings-style game
where you must help the
bemused-looking creatures (the
Mops) through a landscape by
giving them helpful objects like
ladders to climb or tools like drills
to get through walls.

I ran into a stumbling block
before I could get Mop Tops to
run. The game checks for version
1.40 of the AmPlay module but
1.39 is supplied on the DVD. A
quick search of the Internet
revealed that version 1.42 can be
downloaded from
www.riscos.info/index.php/

AMPlayer.
Control is just by means of
clicking the mouse on a supply of
building blocks at the bottom of
the screen and dragging them to
position in the scene, for example
wall sections to divert the Mops'
path, or keys to give them to
unlock doors.

The graphics are excellent with
photo-quality backdrops scrolling
independently of the scenery in
the foreground. Synthesized
music provides an audio
accompaniment in an otherwise
silent gameplay.

Clicking the forward or back
arrows let you quickly scroll left
and right through the landscape.

I found the clicking and
dragging a little unresponsive but
helpfully a red square appears on
the screen where the block will
end up when you have released
the mouse button.
When you have guided all the
Mops to the exit sign you move to
the next level and are given a
passcode so you can skip straight
through the next time you play the
game.

Mop Tops is another enjoyable
outing from Amcog so go out and
buy yourself a copy.

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 20

http://www.amcog-games.co.uk
http://www.riscos.info/index.php/AMPlayer
http://www.riscos.info/index.php/AMPlayer
http://dragdrop.co.uk
http://facebook.com/dragdropmag

Sid Slug
Sid Slug is in a spot of
bother, can you help him
collect all the diamonds
and escape from the
underground maze
whilst avoiding the
aliens, heaps of rubble
and other pitfalls?

Use Z and X for left and
right. If you are on a lift
you can press / and @ to
go up and down.
Additionally, Shift and
Return will ‘stretch’ Sid in
the appropriate direction
enabling you to short cut
distances.

When you have
collected all the diamonds
make your way to the exit
gate, assuming of course
you haven't blocked off
your way back. You will
then proceed to the next
level.

The game ends when
you have completed all
levels or lost all three lives.

Full listing begins p.22

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 21

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Sid Slug listing
 10REM Sid Slug
 20REM (c) Drag 'N Drop 2017
 30MODE13
 40DIM AL(4,3),scale 12
 50ON ERROR PROCerror:END
 60PROCsprites:TINT2,0
 70OFF
 80REPEAT
 90LE=1:sco=0:lives=1
 100REPEAT CLS
 110RESTORE (3890+LE*160-160)
 120dias=0:rubble=0:ALI=1:CLS:FOR
 B=0 TO 14
 130READ A$
 140FOR A=0 TO 19:B$=MID$(A$,A+1,
1)
 150IF B$="A" THEN PROCsprite("AL
IEN",A*64,956-B*64):AL(ALI,1)=A*64
:AL(ALI,2)=956-B*64:AL(ALI,3)=1:AL
I=ALI+1
 160IF B$="R" GCOL G%?4:MOVE A*64
+28,1016-B*64:DRAW A*64+32,1016-B*
64
 170IF B$="O" PROCsprite("WALL",A
*64,956-B*64)
 180IF B$="L" PROCsprite("LIFT",A
*64,956-B*64)
 190IF B$="D" PROCsprite("DIAMOND
",A*64,956-B*64):dias=dias+1
 200NEXT:NEXT:ALI=ALI-1
 210A=64:B=124:MOV=0:MT=TIME:MO=T
IME:ALMT=TIME:PROCscore
 220PROCsprite("SLUG",A,B)
 230REPEAT
 240IF INKEY-67 AND TIME>MO+8 PRO
Cright
 250IF INKEY-98 AND TIME>MO+8 PRO
Cleft
 260IF INKEY-80 PROCup
 270IF INKEY-105 PROCdown

 280IF INKEY-74 AND rubble=0 PROC
stretchright
 290IF INKEY-1 AND rubble=0 PROCs
tretchleft
 300IF dias=0 PROCsprite("EXIT",6
4,124):dias=-1
 310IF dias=-1 AND ((B=124 AND (A
=64 OR A=96)) OR (A=64 AND B=188))
 THEN sco=sco+100:LE=LE+1:MOV=5
 320IF POINT(A+32,B-4)=0 AND POIN
T(A,B-4)=0 AND POINT(A+62,B-4)=0 A
ND MOV=0 THEN PROCfall
 330IF FNpoint(A+32,B-4,2) AND FN
point(A+30,B-4,2) AND MOV=0 THEN s
co=sco+10:dias=dias-1:PROCscore:PR
OCfall
 340IF TIME>ALMT+10 AND ALI>0 THE
N PROCmovealien
 350IF MOV=3 THEN lives=lives-1:P
ROCdie
 360IF MOV=2 AND TIME>MT+5 THEN P
ROCleft2
 370IF MOV=1 AND TIME>MT+5 THEN P
ROCright2
 380UNTIL MOV=3 OR MOV=5
 390UNTIL lives=0:*FX15,0
 400A=GET
 410UNTIL 0
 420DEFPROCright
 430IF MOV<>0 THEN ENDPROC
 440IF FNpoint(A+92,B+60,4) THEN
rubble=1
 450IF FNpoint(A+92,B,1) OR FNpoi
nt(A+92,B+60,1) OR FNpoint(A+92,B,
3) OR FNpoint(A+92,B+60,3) OR FNpo
int(A+92,B,5) OR FNpoint(A+92,B+60
,5) THEN ENDPROC
 460IF FNpoint(A+94,B,2) AND FNpo
int(A+94,B+60,2) THEN GCOL 0:RECTA
NGLE FILL A+64,B,62,60:sco=sco+10:
dias=dias-1:PROCscore
 470exit=0:IF rubble=2 THEN

 480PROCsprite("RUBBLE",A,B)
 490A=A+64
 500PROCsprite("SLUG",A,B)
 510rubble=0:exit=1
 520ENDIF
 530IF exit=1 THEN ENDPROC
 540IF rubble=1 THEN rubble=2
 550GCOL 0:RECTANGLE FILL A,B,60,
60
 560PROCsprite("SLUG2",A,B)
 570MOV=1:MT=TIME
 580ENDPROC
 590DEFPROCright2
 600MOV=0
 610GCOL 0:RECTANGLE FILL A,B,60,
60
 620A=A+32
 630PROCsprite("SLUG",A,B)
 640MO=TIME
 650ENDPROC
 660DEFPROCleft
 670IF MOV<>0 THEN ENDPROC
 680IF FNpoint(A-32,B+60,4) THEN
rubble=1
 690IF FNpoint(A-32,B,1) OR FNpoi
nt(A-32,B+60,1) OR FNpoint(A-32,B,
3) OR FNpoint(A-32,B+60,3) OR FNpo
int(A-32,B,5) OR FNpoint(A-32,B+60
,5) THEN ENDPROC
 700IF FNpoint(A-36,B,2) AND FNpo
int(A-36,B+60,2) THEN GCOL 0,0:REC
TANGLE FILL A-64,B,62,62:sco=sco+1
0:dias=dias-1:PROCscore
 710exit=0:IF rubble=2 THEN
 720PROCsprite("RUBBLE",A,B):A=A-
64
 730PROCsprite("SLUG",A,B):rubble
=0:exit=1
 740ENDIF
 750IF exit=1 THEN ENDPROC
 760IF rubble=1 THEN rubble=2
 770GCOL 0:RECTANGLE FILL A,B,60,

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 22

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Armcode for Beebsters
In the October 2016 edition of
Drag 'N Drop we started
looking at Arm assembly
language from point of view of
someone used to programming
in 6502 code on the BBC Micro.

We made the following
observations:

l 6502 instructions can be one,
two or three bytes big whereas
Arm instructions are always four
bytes (one word) big.
l There are three eight-bit
registers in 6502 and 16, 32-bit
registers in Armcode called
R0...R15.
l 6502 uses regular brackets,
only curly or square brackets are
used in Armcode.
l There's no RTS equivalent in
Armcode so a subroutine has to
push the registers onto the stack
with STMFD SP!,{LR} and pulll off
at the end with LDMFD SP!,{PC}
when it's finished.
l On the BBC Micro you could
poke bits of assembly code in odd
corners of memory by setting P%

directly but on RISC OS it is
always advisable to DIMension a
block of memory and set P% to its
address (DIM code% 100:P%=
code : [... and not P%=&900 : [
...)

Although Arm proclaims to have
16 registers in reality only 13 are
available because registers 13 to
15 have special uses. R13 is the
stack pointer, R14 is the link
register and R15 is the program
counter.

They can all be referred to by
their alternative notations: SP for
R13, LR for R14 and PC for R15.
Which is to say, the instruction
STMFD SP!,{LR} can be written
STMFD R13!,{R14} and LDMFD
SP!,{PC} as LDFMD R13,{R14}.

In fact, you can miss out the 'R'
because the assembler
understands LDMFD 13,{14}
perfectly but it's not good practice
since it can be confusing.

In 6502 code we are used to
operating on memory locations
directy. For example, the code

fragment below could be used to
toggle eight characters of text at
memory location data from upper
to lower case:
LDA #32
LDX #0
.loop
ORA data,X
INX
CPX #8:BNE loop
RTS
.data EQUD0:EQUD0

In Arm code all you can do is
to load data from memory and
store data to it, you cannot alter it
directly. So we would have to
write:
MOV R0,#32
MOV R1,#0
ADR R2,data
.loop
LDRB R3,[R2,R1]
ORR R3,R3,R0
STRB R3,[R2,R1]
ADD R1,R1,#1
CMP R1,#8
BNE loop
MOV PC,LR
.data DCD 0:DCD 0

DCD by the way is exactly the
same as EQUD (and DCB is

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 28

http://dragdrop.co.uk
http://facebook.com/dragdropmag

DIY Pointers
If you have grown bored of the
standard blue pointer on your
computer screen then this
article is for you.

RISC OS allows you to
redefine the arrow shape to
anything you wish, provided it's
no larger than 32 by 32 pixels and
consists of three colours.

The listing below lets you
choose between a hand, wand,
cigarette (not that we're
encouraging Drag 'N Drop
readers in that nasty habit),
sausage and trowel. You can add
plenty more of your own.

The program sets up a user
sprite area and READs in the
sprites from the DATA lines from
520 onwards. Each sprite is
specified, firstly, with the screen
Mode it was defined in. This can
be any four-colour mode such
Mode 1, Mode 8 or Mode 19.
Next come the name and
dimensions in pixels.

The meaning of the Ascii
characters in the DATA lines is as
follows: full stop for background,1,

2 or 3 for the three colours.
The last line for each sprite is

the palette (see later). A menu is
presented inviting the you to
choose the desired pointer. The
new pointer remains in effect until
you reset your machine (or re-run
the program).

The name of the standard
pointer shape in the Wimp sprite
pool is known as ptr_default. The
chosen sprite in the user sprite
area is renamed to ptr_default,
the sprite area saved out as
Sprites, then a *IconSprites
command is issued to merge new
pointer shapes to the sprite pool.
Thus the new ptr_default replaces
the old ptr_default.

Setting the colours for the
pointer is a little unconventional.

Instead of taking the colours from
a palette in the sprite file, they
have to be redefined with a
couple of SYS calls.

SYS "Wimp_ReadPalette",,
block% fetches 20 words of data
in to a parameter block at block%.
That's 16 words for the 16 Wimp
colours, plus border colour and
three pointer colours.

One word of memory describes
the colour in &BBGGRR00
format. Pointer colour 1 is at
block%+68, pointer colour 2 at
block%+72 and pointer colour 3
at block%+76.

The default colours are &
F0F000 (cyan) and &00F000
(blue) respectively. (The standard
arrow shape only has two colours,
the third colour isn't used).

The new colours are poked
into the parameter block and SYS
"Wimp_SetPalette",,block% is
issued to effect the change.

To save space in the program,
the palette is written in BBGGRR
format (no & prefix) and line 240
uses EVALuates the hex number

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 30

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Python Primary School
This term we make a start at Wimp
programming with Python.

In preparation for this I want to go through
bitset() and padstring() so we know what we are
up against. They are used in the Bitset program
listed below which demonstrates the problems we
have to overcome.

Bitset/py listing
 1# block.bitset() test
 2# Drag 'n Drop magazine
 3# by Paul Dunnington
 4
 5import swi
 6b = swi.block(6, [0,0,0,0,0])
 7print swi.integers(b.start,6)
 8
 9b.bitset(2,7,0)
 10b.bitset(3,2,0)
 11b.bitset(4,7,0)
 12b.bitset(5,1,0)
 13print swi.integers(b.start,6)
 14print
 15b.padstring(chr(7),'a',3,4)
 16b.padstring(chr(2),'A',4,5)
 17b.padstring('',chr(7),5,6)
 18b.padstring('',chr(1),6,7)
 19print swi.integers(b.start,6)
 20print
 21print swi.tuples(b.start,4,6)
 22print
 23b.padstring('',chr(3),0,1)
 24b.padstring('',chr(1),1,2)
 25b.padstring('',chr(12),2,3)
 26b.padstring('',chr(0),3,4)
 27print swi.tuples(b.start,4,6)

 28print
 29b.padstring('',chr(4),2,6)
 30print swi.tuples(b.start,4,6)
 31#b.bitset(4,0xff030012,0)
 32b.bitset(5,-1,0)
 33print swi.integers(b.start,6)
 34print
 35b[5] = -16580590
 36#b[5] = 0xff030012
 37print swi.integers(b.start,6)
 38
 39#os.system("ScreenSave SDFS::RISCOSpi.$.Screens.
Python")

Note: Python programs unlike Basic do not
have line numbers. They are shown in the
listings for reference only. If you are using
StrongEd turn the automatic line numbering
on BaseMode > Choices > LineNos >
Physical. Edit does not have this facility but
tapping f5 will tell you the line number the
caret is on.

Line 5 imports swi then line 6 defines a block of
6 words, initialising it with the list of five integers
and padding out with zeros. Line 7 prints out the
six integers for confirmation. Line 9 uses
bitset(i,x,y) to set the bits in b[i] to x after clearing

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 33

http://dragdrop.co.uk
http://facebook.com/dragdropmag

them with y. Thus b.bitset(2,7,0) reads the word
from block b at index i, here 2, then bitwise ANDs
with y, here 0, which clears the whole word to 0,
and then EORs with x, here 7, so setting the word
at b[2] to 7.

In effect, when y = 0, we get b[i] = x. Note that
b[2]=7 is not equivalent to Basic's b?2=7, Python
sets the whole word as in b!8=7 so b[2]=7 is the
way unless we want to set, or clear, individual bits
in a word.

Lines 10-12 set the next three words before line
13 prints six integers as the result. Line 14 outputs
a blank line. The first line of the screen shot shows
six zeros even though we gave a list of five. In fact
we only need a list of one zero to clear the block,
b=swi.block(6,[0]). The second line shows words
2 to 5 set to 7,2,7 and 1.

Line 15 uses padstring(chr(7),'a',3,4) to set byte
three of the block, the most significant byte of the
first word of the block, to 7. It's putting the string,
here only a single character chr(7) into the block
starting at byte three, up to but not including byte
four, padding with a if needed.

The a isn't needed here but we have to include
the pad character or we get an error. Line 16 does
the same for byte four, inserting a 2 and not
padding with A.

Line 17 is a neater way to achieve our goal,
inserting a null string, and padding with chr(7) from
byte five up to, but not including, byte 6. Line 18
does the same for byte seven, inserting a 1.

Line 19 prints the list of integers, line 20 a blank,
line 21 prints a list of six tuples, each containing
four bytes, and line 22 prints another blank.

Line 4 of the screenshot shows the 6 integers
but the bytes we just set are not obvious. Line 6
and 7 of the screen shows all the bytes in tuples of
4 and we can see the bytes are where we put them.

Lines 23 to 26 of the program set the first four
bytes to 3, 1, 12 and 0 in the same way, with

line 27 printing the tuples and line 28 a blank. Line
29 then uses the same method to put a 4 into bytes
2 through 5, (from index 2 to, but not including, 6),
with line 30 printing the result. Line 31 uses bitset()
to insert a hex number with the top bit set into the
4th word of the block and line 32 inserts -1 into

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 34

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Tracing Outlines
A need which often arises in
graphics design on computers,
particularly in the application of
fonts and typography, is the
prodution an outline version of
a shape originally constructed
with thick lines.

To illustrate what I mean,
supposing you have drawn the
shape in Figure 1 in Draw – a
trivial example consisting of one
curve and a line thickness of 4
points.

Figure 1.

Now, if you wanted to enlarge or
reduce the shape you can use
Draw's magnify option (Menu >
Transform > Magnify). Scaling of
line width will be taken care of
provided your original line width
wasn't set to 'thin')

This wouldn't work though if
the shape was part of an outline
font. What has to happen is that

the outline of the shape has to be
traced to result in a filled shape
shown in figure 2.

Figure 2.

Fortunately this doesn't have to
be done painstaikingly by hand.

Essentially you take a snapshot of
the shape in bitmap format, trace

the bitmap, and import the result
back into Draw.

A couple of excellent (and free)
tools are available in RISC OS to
do this.

They are DrawToSprite from
http://www.sinenomine.co.uk/
software/index.html and Trace
from http://www.davidpilling.com/
wiki/index.php/Trace.

There seems to be only one
download option for Trace, the
source code, but inside the
download you will find the !Trace
application which is all you need.

 It's best to blow your
shape up before tracing to
achieve best results. I
enlarged the example
shape by a factor of 10
before importing it into
DrawToSprite.

Drag the draw file onto
DrawToSpr's iconbar icon.
A window appears with
lots of options. You don't
need to adjust any of them

for our purposes, the number of
colours can remain at 2, a grey

Drag'N Drop Winter 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 39

http://www.sinenomine.co.uk/software/index.html
http://www.sinenomine.co.uk/software/index.html
http://www.davidpilling.com/wiki/index.php/Trace
http://www.davidpilling.com/wiki/index.php/Trace
http://dragdrop.co.uk
http://facebook.com/dragdropmag

Module Saver
Relocatable modules are
machine code programs which
when loaded act as an
extension to the operating
system.

Whilst RISC OS has a 'star'
command to load a module
(*RMLoad) there isn't. strangely,
a complementary one to save a
module.

The short program presented
here fills that omission by
providing a *RMSave command.
The assembly code creates a
small utility file called RMSave in
the currently selected directory.

Press Ctrl+F12 to open a task
window and type *modules to
see the list of modules installed
on your machine.

Type *RMSave <module>
where <module> is the name of
the module whose code you wish
to save, for example *RMSave
WaveSynth will save a copy of
the WaveSynth module in the
currently selected directory.

You may wish to move
RMSave to your machine's

library, which is located at
!Boot.Library so that it can be
used independently of the
currently selected directory.

RMSaveSrc listing
 10REM RMSaveSrc source code
 20REM saves out module code
 30REM Drag N Drop January 2017
 40
 50DIM code &100
 60FOR pass=0 TO 3 STEP 3
 70P%=code
 80[OPT pass
 90STMDB sp!,{r0-r7,lr} ;preser
ve registers r0-r7 and link
 100MOV r6,r1 ;copy r1 to r6
 110LDRB r0,[r6,#0] ;get Ascii c
ode
 120CMP r0,#32 ;is Ascii code le
ss than 32?
 130ADRLT r0,syntaxerror ;yes, p
ut address of error in r0
 140BLT error ;and jump to error
 code to advise user of correct sy
ntax.
 150
 160MOV r0,#18
 170MOV r6,r1
 180SWI "XOS_Module" ;Perform SY
S "OS_Module",18,<module name>
 190BVS error ;O/Flow flag set o
n return, jump to error routine
 200
 210MOV r0,#10 ;OS_File 10
 220MOV r1,r6 ;Pointer to filen
ame from r6

 230LDR r2,filetype ;File type s
tored at 'filetype'
 240
 250LDR r5,[r3,#-4] ;length of m
odule stored in word previous to m
odule position
 260MOV r4,r3 ;start of module c
ode
 270ADD r5,r4,r5 ;add length to
get end of module code
 280MOV r3,#0 ;r3 not used in th
is call, set to zero
 290SWI "XOS_File"
 300BVS error ;O/Flow flag set s
o report error
 310LDMIA sp!,{r0-r7,pc} ;all ok
 so return to Basic.
 320
 330; ***error routine***
 340.error STR r0,[sp]
 350LDMIA sp!,{r0-r7,lr}
 360MSR CPSR_f,#1<<28 ;set O/Flow
 flag in status register
 370MOV pc,lr ;and return to Bas
ic.
 380
 390.filetype EQUD &FFA ;file ty
pe 'Module'
 400
 410.syntaxerror
 420EQUD &DC
 430EQUS "Syntax: *RMSave <module
>"+CHR$0
 440ALIGN
 450]
 460NEXT
 480SYS "OS_File",10,"RMSave",&FF
C,,code,P%

Drag'N Drop Winter 2017 | dragdrop.co.uk | facebook.com/dragdropmag | Page 41

http://dragdrop.co.uk
http://facebook.com/dragdropmag

	<Chapter>
	How do I...?
	News and App Updates
	RISC OS Sound System
	ConvText
	Module Auto 32-Bitter
	Review
	Sid Slug
	Armcode for Beebsters
	DIY Pointers
	Python Primary School
	Tracing Outlines
	Module Saver

