

Copyright © Drag 'N Drop 2016
Produced on RISC OS computers

This issue has been blessed with
contributions from the following people:

Robin Wilks (Forth)
Paul Dunnington (Python Primary School)

Christopher Dewhurst (everything else)

The views expressed in this magazine are
not necessarily those of the editor.

Alternative views are always welcome
and can be expressed by either writing an

article or a short editorial.

All articles and advertisements are
published in good faith. No materials in

this publication are meant to be
offesnsive or misleading. If you come

across something you believe is either of
the above please contact the editor using

the details below.

Contact Information
Editor: Christopher Dewhurst
Email: editor@dragdrop.co.uk

www.dragdrop.co.uk

Welcome to Volume 8 of Drag
'N Drop. The Pi-Top will be
featuring on the magazine
covers, it's a laptop which
could be described as the first
native ARM machine since the
Acorn A4.

CJE Micros have been hard
at work writing RISC OS
support software including
desktop apps for brightness
control and battery indicator. Of
course, we've never had so
many choices of hardware on
which to run RISC OS so if Pi-
Top isn't your cup of tea then
the ARMX6 or something
called the "LaPi AtrixRO"
might!

For those attending the
London Show and want the
Drag 'N Drop back issues stick
we have a special birthday
'memory cube' (limited stock)
Hope to see you there!

Christopher Dewhurst

Editorial 1

How do I....? 2

News 3

Files of the World:
Midi 5

Forth on the Pi 11

M/Code stars 14

Floozy 18

Python Primary
School 24

Armcode for
Beebsters 30

256-colour palette
switching 34

Fibonacci Wallpaper
38

MemAlloc module 39

Autofocus utility 42

Drag'N Drop Autumn 2016 | www.dragdrop.co.uk | facebook.com/dragdropmag Page 1

http://www.dragdrop.co.uk
http://facebook.com/dragdropmag

How do I...?
...get the BBC Basic prompt?

To get the BBC Basic prompt press F12
and type *BASIC and press Return. You

can change the screen mode with MODE n
where n is a number e.g. MODE 7 or MODE 0.
Type AUTO for automatic line numbering. Press
Escape to stop and type SAVE "myprog"
followed by Return to store myprog on hard disc.

To return to the desktop type *QUIT.
Programs listed in Drag 'N Drop are assumed to
work on all machines with RISC OS 5 e.g.
Raspberry Pi, unless otherwise stated.

...open a Task window?
Menu click over the Raspberry icon on the right
side of the iconbar and select click on Task
window. Or press Ctrl + F12.

You may need to reserve more memory for
the task in which case adjust-click on the
Raspberry icon and under Application tasks click
and drag the Next slide bar out to the right.

You can also type programs in a task window,
hold down Ctrl and press F12. You can't use the
cursor editing facility or change MODE, however.

*BASIC
ARM BBC BASIC V
version 1.54
Starting with 651516
bytes free
>

Task window

You can also program and run Basic programs
from the desktop. Double-clicking on the filer

icon runs it, holding down Shift and double
clicking loads it into your text editor.

...select the currently selected

directory?
Articles may tell you to set the CSD (currently
selected directory). Just click menu over filer
window and choose Set directory ^W or you can
use the !EasyCSD application presented in Drag
N Drop 6i1.

...open an Applcation Directory?
Application directories begin with a ! called
'pling'. Hold down shift and double click select to
open the directory.

Drag'N Drop Autumn 2016 | www.dragdrop.co.uk | facebook.com/dragdropmag Page 2

http://www.dragdrop.co.uk
http://facebook.com/dragdropmag

News and App Updates
RISC OS London Show
The RISC OS premier show takes
place on 29th October at the St
Giles Hotel in Feltham, London.
The show runs from 11am to 5pm
and costs £5 to get in on the door.
Come along for an eclectic mix of
Acorn past and RISC OS present
including an upgrade to the
popular Pi-Top computer. Get the
latest Drag N Drop and lots of
other special offers from our
stand including a limited edition
memory box (flash USB and
chocolates) to celebrate the start
of volume 8.

RISCBook Go!
R-Comp Interactive have unveiled
the latest option for running RISC
OS under emulation on a
Windows machine, with the bonus
that most legacy RISC OS
software works! Prices for the
RISCBook Go! start at £349 and
more details are to be found at
http://www.riscbook.co.uk

Popular – the Pi-Top

Text>Draw 1.32
This application aids inputting of
text containing different styles
(subscript, italic etc.) in Draw. The
latest version can be downloaded
for free from http://www.chris-
johnson.org.uk/software/
tdraw.html.

TranJPEG 1.33
A desktop utility for rotating and
transforming JPEG photos(using
jpegtran) which works on the
Raspberry Pi. Download from
http://www.chris-johnson.org.uk/
software/tranjpeg.html.

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 3

http://www.riscbook.co.uk
http://www.chris-johnson.org.uk/software/tdraw.html
http://www.chris-johnson.org.uk/software/tdraw.html
http://www.chris-johnson.org.uk/software/tdraw.html
http://www.chris-johnson.org.uk/software/tranjpeg.html
http://www.chris-johnson.org.uk/software/tranjpeg.html
http://dragdrop.co.uk
http://facebook.com/dragdropmag

AMPlayer 1.41
AMPlayer is a relocatable module
which plays audio MPEG files
such as MP3s. Desktop apps like
DigitalCD use the module and the
latest version of AMPlayer can be
downloaded for free from http://
www.riscos.info/index.php/
AMPlayer.

Impact 3.51
A minor upgrade to fix a fault in
the version of the relational
database released at the RISC
OS Wakefield Show is free to
users already on version 3.47 or
later. See http://sinenomine.co.uk/
software/impact/.

Fireworkz 2.20
A major update to the commercial
version of the spreadsheet
application is to be released at
the London show. A promising
new feature is support for a global
clipboard so you can copy data

from and to other applications and
even between icons.

Both RISC OS and a Windows
version of Fireworkz come on one
CD-Rom costing £39 (upgrades
from earlier versions at lower
cost) with a Getting Started HTML
Guide.

CloudFS
Elesar (the people responsible for
development of the Titanium

computer) have
released
CloudFS which is
a RISC OS filing
system allowing
connection to
storage on a

remote server. Files can be seen
by your smartphone, PC etc. as
well. CloudFS costs £28.80 and
more details are at
http://shop.elesar.co.uk/
index.php?route=product/
product&product_id=63

RISC OS FR
David Feugey has been busy
supporting french-speaking RISC
OS users at https://www.riscos.fr/,
English version at https://
www.riscos.fr/english.html. The
website now hosts a pret-a-
manger version of RPCEmu for
newcomers to get started more
easily in the RISC OS world. Also
RISC OS FR now hosts
subdomains, the first one being
https://www.henrikbp.riscos.fr/

Closer 1.01
A simple but useful desktop app
showing details of currently open
files and the opportunity to close
them. Version 1.01 can be
downloaded from
https://www.henrikbp.riscos.fr/

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 4

http://www.riscos.info/index.php/AMPlayer
http://www.riscos.info/index.php/AMPlayer
http://www.riscos.info/index.php/AMPlayer
http://sinenomine.co.uk/software/impact/
http://sinenomine.co.uk/software/impact/
http://shop.elesar.co.uk/index.php?route=product/product&product_id=63
http://shop.elesar.co.uk/index.php?route=product/product&product_id=63
http://shop.elesar.co.uk/index.php?route=product/product&product_id=63
https://www.riscos.fr/
https://www.riscos.fr/english.html
https://www.riscos.fr/english.html
https://www.henrikbp.riscos.fr/
https://www.henrikbp.riscos.fr/
http://dragdrop.co.uk
http://facebook.com/dragdropmag

StudioSound 2.05
Fully Raspberry Pi-compatible,
StudioSound lets you compose
abstract electronic music
soundscapes by dragging and
dropping WAVe samples onto the
main window with options to
control track volume, pan, digital
sound processing (DSP), looping
etc. The latest version is FREE
and can be downloaded from
https://www.henrikbp.riscos.fr/.
Note you may also require the
THHeap module from

http://www.filebase.org.uk/
software/programming/982

ProSound 2.01
This is a sophisticated sound
sample player and editor. A
variety of effects can be applied
to samples such as WAV files –
flange, fade in/out, echo etc.
Edited samples can then be used
to compose your piece in
StudioSound. We have found it
ProSound works and feels a lot
better than PlayIt and it's also
FREE from https://
www.henrikbp.riscos.fr/

DisAssem 3.26
A desktop utility to disassemble
ARM machine code files and
modules and available free from
https://www.henrikbp.riscos.fr/

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 5

https://www.henrikbp.riscos.fr/.
http://www.filebase.org.uk/software/programming/982
http://www.filebase.org.uk/software/programming/982
https://www.henrikbp.riscos.fr/
https://www.henrikbp.riscos.fr/
https://www.henrikbp.riscos.fr/
http://dragdrop.co.uk
http://facebook.com/dragdropmag

Files of the World
5 MIDI Files

In this instalment we look at
Midi Files a development of the
Musical Instrument Digital
Interface (MIDI) standard
devised in the 1980s.

We'll first take a quick look at an
application which plays Midi files,
then the Midi file structure itself,
and finally armed with the
information learnt we'll write our
own BASIC program to display
and play Midi files – very simple,
it has to be said, but with much
scope for enhancement.

The Midi player I use on my
Raspberry Pi is ReMIDI and its
home page can be found here:
http://www.amplitude.demon.nl/
remidi.html.

Download rel061p.zip (2477k)
complete with
samples. Copy this
out into a suitable
location on your hard disc. Then
download Iyonix compatible

version without samples and
copy it over the top. Double click
to put ReMIDI on the icon bar.

Next you need some Midi files,
there are thousands of free ones
on the internet.
http://www.mfiles.co.uk/ is a good
place to start and is compatible
with Netsurf.

Midi files will usually be
recognised and filetyped MIDI by
Netsurf. If they aren't then use the
filer to set the filetype to &FD4.

Then just drag the file onto
ReMIDI's iconbar icon and it will
play.

Midi files are sequences of
musical events and can be
thought of as like instructions on
which note(s) to play on the piano
keyboard and when.

The actual piano sound sample
is stored on your computer (within
ReMIDI in fact). Note this is
different from WAV files which we
looked at last time. Waveform
data isn't included in Midi files,
just directions on when and how
to play them.

We're going to look at a simple
tune, Twinkle Twinkle Little Star
as an example.

Figure 1 is an annotated dump
of the first 256 bytes of Twinkle.
The left hand column is the offset
in bytes from the start of the file,
the middle column the bytes in
hex, the right hand column the
Ascii representation – which is
what you would see in a memory
editor. Lines across the top of
bytes in the middle column group
particular bytes in order.

By now we're used to files
having a header of some sort.
This is the first few bytes of a file
identifying what the file is. Midi
files are no exception.

The header kicks off with a
word (four bytes) which spell
MThd (the bytes 4D 54 68 64 in
hex).

The next word is the length of
the header in bytes (not including
the MThd) which has always been
6 but subject to change. Why is
the 6 the fourth byte and not the
first? I'll come to that later.

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 5

http://www.amplitude.demon.nl/remidi.htm
http://www.mfiles.co.uk/
http://dragdrop.co.uk
http://facebook.com/dragdropmag

Forth on the Pi
Forth is a computer language
created by Charles Moore in
the 1960s. "It behooves new
programmers to sample all
languages available. Forth is
the only one that's fun," he
said.

In the beginning Forth wasn't
so much a computer language as
a complete programming system
with operating system, editor,
assembler plus a compiler for
finished code and an interpreter
for program development.

In Forth there are just a few
primitive instructions called words
(forming the nucleus of the
system) with all other words
being defined in terms of these
primitives, or each other.

So Forth is 'extensible' - new
words are treated the same as
those in the nucleus. To run a
new word its name only has to be
typed (or loaded) and parameters
are passed between words via
the stack.

Nowadays Forth is usually
simulated and is available for

many different OSs including
RISC OS on the Pi.

!ARMForth is available from
my website http://www.rforth.uk
and was originally written in 1992
by Rob Turner. Since the source
code is written in BBC Basic and
assembly code (using Basic's
built-in assembler) it was
relatively easy to update it to run
on modern RISC OS machines.

I have called the updated
version ARMForth32 to
distinguish it from the original
software which would run on the
Acorn Archimedes only.

Download ForthPi/zip from the
Downloads section.Then extract
!ARMforth32 to a suitable
location on your hard disc e.g. in
16GbPi.$.Programming.

Double-click on the
!Armforth32 icon in the
normal way and a blue and
yellow icon will appear on

the icon bar.
Clicking select on this icon will

launch the Forth application
specified in the file

!ARMforth32.Examples.
!Startup. In this case !Startup is
a Forth program giving a menu of
example programs. Type demos
followed by Return for a list of
example programs, then a
number between 1 and 20 to run
example programs.

Incidentally I have not used a
Pi3 so don't know if there are any
problems with ARMForth32 it.

Drag'N Drop October 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 11

http://www.rforth.uk
http://dragdrop.co.uk
http://facebook.com/dragdropmag

M/Code Scrolling Stars
Here we feature several
machine code routines which
scroll a field of stars on the
screen, ideal for backgrounds
in arcade games.

After typing one or more
listings of your choice save it in
case you've made a typing slip in
the assembly code which could
hang the machine.

The top left hand corner of the
screen has an address in Ram
which varies from screen mode to
screen mode and machine to
machine.

Some calls to the operating
system are made to ascertain this
value, the extent of the screen
area, and also the number of
pixels across the screen. A line by
line commentary on how the
program works is given below.

STARS
 10REM *** M/C Scrolling Stars *
**
 20REM (c) Drag 'N Drop Oct 2016
 30MODE 13
 40ON ERROR REPORT:PRINT" at ";E
RL:END
 50OFF

 60PRINT TAB(9,15)"SCROLLING STA
RS DEMO"
 70ns%=40
 80PROCmc
 90CALLinit
 100FOR i%=0 TO ns%*4-4 STEP 4
 110i%!stars%=RND(!scrsiz%)+!scrt
op%
 120NEXT
 130CALL plot
 140REPEAT
 150CALL scroll
 160a=INKEY(5)
 170UNTIL 0
 180END
 190
 200DEF PROCmc
 210DIM code% 1000
 220FOR pass=0 TO 2 STEP 2
 230P%=code%
 240[OPT pass
 250.plot
 260STMFD sp!,{lr}
 270ADR r0,stars% \star table ad
dr in r0
 280MOV r1,#ns%-1 \no of stars m
inus 1 in r1
 290.loop
 300MOV r2,r1,lsl#2 \r2 = r1*4
 310LDR r3,[r0,r2] \get star's
screen address
 320LDRB r4,[r3] \load byte f
rom screen ram
 330EOR r4,r4,#RND(255) \EOR it
with 255
 340STRB r4,[r3] \store back
in screen ram
 350SUBS r1,r1,#1 \decrease sta

r pointer
 360BPL loop \repeat until
done all 50
 370LDMFD sp!,{pc} \return to Ba
sic
 380
 390.scroll
 400STMFD sp!,{lr} \store copy of
 Basic return addr
 410BL plot \erase stars
 420LDR r5,scrend% \screen ram e
nd in r5
 430LDR r6,scrsiz% \screen ram s
ize in r6
 440ADR r0,stars% \star table a
ddr in r0
 450MOV r1,#ns%-1 \no of stars mi
nus 1 in r1, star pointer
 460LDR r4,xpix% \no of pixels a
cross screen in r4
 470.loop2
 480MOV r2,r1,lsl#2 \r2 = r1*4
 490LDR r3,[r0,r2] \get star's s
creen addr
 500ADD r3,r3,r4 \add no pixel
s across screen
 510CMP r3,r5 \off bottom o
f screen?
 520SUBGE r3,r3,r6 \subtract scr
een ram size if so
 530STR r3,[r0,r2] \store update
d address
 540SUBS r1,r1,#1 \decrease star
 pointer
 550BPL loop2 \until done all 5
0
 560BL plot \replot stars
 570LDMFD sp!,{pc} \restore Basic

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 14

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Floozy
The local water board has
claimed to invent a
revolutionary new pipe to
replace existing ones but
unfortunately the Tetraflurine
Carbonadium making up the
pipes has disintegrated and
you have been employed to put
all the pipes back before the
houses are flooded!

Move the cursor around the
screen with the Z, X, / and @
keys and press Return to lay a
pipe section from the display in
the top left corner.

If you fail to connect the pipe
before the water reaches you
then you lose the game!

The game features animated
water, six types of pipe section
and and a high score table.

Type in the Basic listing and
save it before running, there is a
short machine code section and if
there are bugs it could crash your
machine.

Save it on your hard disc and
double click from the desktop to
run.

Full listing begins p.19

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 18

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Procedures

cycle Cycle the colours, calls
machine code routine to scan
screen to change pixels of
value D% to E%.

dead% Did not manage to
complete pipeline so display
failure message

delay Delay routine
completed Game complete

routine
game Main game proc
hiscore Player has achieved hall

of fame, invite to enter name
init Sets up the sprites.
mc Assemble machine code
scores Display high score and

instructions
space Print message and await

press of space bar
sprite() Plot sprite number A% at

(X%,Y%)
text() Centre and Print multi-

coloured text

Variables

dead% is TRUE if flooze seeps
out of unconnected pipe
section

dir Current direction water is
flowing

fin% only TRUE when pipeline is

complete
fx,fy Flooze co-ordinates
fzi,fzc Flooze counters
fza Flooze colours (Basic GCOL

values)
fzb Flooze colours (screen pixel

colour values)
grid() Map of playing area
hi$() High score names
hi%() High scores
nextt Next pipe section to be laid
score% current score
sheet% current screen number
tile Current pipe section being

laid
xpos,ypos player position

 3970D.!KKKKKKKKK$!!!!!!!!!!!!!!!
 3980D.!````KK```$!!!!!!!!!!!!!!!
 3990D.!``6``K``6$$!!!!!!!!!!!!!!
 4000D.!``6``6````$$$$$$$$$$$$$$!
 4010D.!``6``6``6``K``6``6````6$!
 4020D.!````6K``6``6`````6``66KK!
 4030D.!6666KK66K666K6666K66KKKK!
 4040D.!KKKKKKKKKKKKKKKKKKKKKKKK!
 4050D.!K`!!!KKKKKKKKKKKKKK!!!!K!
 4060D.!K`66!KKKKKKKKKKKKKK!66`K!
 4070D.!K`66!KKKKKKKKKKKKKK!66`K!
 4080D.!K```!KKKKKKKKKKKKKK````K!
 4090D.!KKKKKKKKKKKKKKKKKKKKKKKK!
 4100D.!!!!!!!!!!!!!!!!!!!!!!!!!!
 4110
 4120D.!!!!!!!!!!!!!!!!!!!!!!!!!!
 4130D.!KKKKKKKK$$!!!!$$KKKKKKKK!
 4140D.!K````KKKK$!!!!$KKKK!```K!
 4150D.!K`66!KKKK$!!!!$KKKK!66`K!
 4160D.!K`66!KKKK$!!!!$KKKK!66`K!
 4170D.!K!!!!KKKK$!!!!$KKKK!!!`K!
 4180D.!````KK```$!!!!$``K`````K!
 4190D.!``6``K``6$!!!!$6`6``666K!
 4200D.!``6``6```$!!!!$``6``6``K!
 4210D.!$`6``6``6$!!!!$6`6``6``K!
 4220D.!$$$$$$$$$$!!!!$K`6````6K!
 4230D.!!!!!!!!!!!!!!!$K66K6666K!
 4240D.!!!!!!!!!!!!!!!$KKKKKKKKK!
 4250D.!!!!!!!!!!!!!!!$``K````KK!
 4260D.!!!!!!!!!!!!!!$$6`6``66`6!
 4270D.!$$$$$$$$$$$$$$6K`6``KK`6!
 4280D.!$`6``6``6``K``6``6````6K!
 4290D.!````6K``6``6`````6``66KK!
 4300D.!6666KK66K666K6666K66KKKK!
 4310D.!KKKKKKKKKKKKKKKKKKKKKKKK!
 4320D.!K`!!!KKKKKKKKKKKKKK!!!!K!
 4330D.!K`66!KKKKKKKKKKKKKK!66`K!
 4340D.!K`66!KKKKKKKKKKKKKK!66`K!
 4350D.!K```!KKKKKKKKKKKKKK````K!
 4360D.!KKKKKKKKKKKKKKKKKKKKKKKK!
 4370D.!!!!!!!!!!!!!!!!!!!!!!!!!!

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 23

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Python Primary School

In classtime in the Summer 2016
edition of Drag 'N Drop we looked
at a Python program Temp/py
with routines to controll a
temperature sensor connected to
the Pi's GPIO (General Purpose
Input/Output port) and examples
of how to access RISC OS's SWI
calls.

To complement Temp/py we'll
look at second program in class
today named PyPressure/py
which uses a Freescale I2C

Precision
Altimeter to
read the air
pressure.
This chip
runs on 3.3
volt and so

can be directly connected to the
GPIO pins on the Pi.

I bought my MPL3115A2
Altitude/Pressure/Temp Sensor
Breakout Board from

Hobbytronics. You may need the
ROOL wiki for the information on
OS_IICOp and also the
iic_transfer structure, they are not
in the PRMs.

The application note AN4519
for the MPL3115A2 can be found
at http://www.freescale.com/ as
well as the data sheet at http://
cache.nxp.com/files/sensors/doc/
data_sheet/MPL3115A2.pdf
?fsch=1&sr=10&pageNum=1).

I originally used swi.integers()
to read the block of data returned
by OS_IICOp and another five
lines to separate each byte, 22
lines in all.

I then remembered
swi.tuples() and when I worked
out how to use the list of tuples
there were only 10 lines of code,
a useful saving.

There are four lines of
comments at the program start,
then line 6 imports time as well
as swi. A polling loop was used to
start with but changed to
time.sleep() to wait for the
conversion to finish.

Line 7 creates an eight-byte
block for the register reads in the
global namespace so the
read_iic() function as well as the
rest of the program can access it.
We only read six bytes here but
blocks are defined in words, so
two words equals eight bytes.

Lines 9 to 12 are the read_iic()
function definition which takes
three parameters:

l iic is the IIC address of the
sensor

l register the address to start
reading from

l number is how many reads
to make.

Line 10 defines another block
of one word and is initialised with
the register variable, so we now
have dat.start as a pointer to
register.

Line 11 defines yet another
block of six words, initialised as
two iic_transfer structures,
(address, start register, data
length).

The first writes the register to
start reading from passing one

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 24

http://www.freescale.com/
http://cache.nxp.com/files/sensors/doc/data_sheet/MPL3115A2.pdf?fsch=1&sr=10&pageNum=1
http://cache.nxp.com/files/sensors/doc/data_sheet/MPL3115A2.pdf?fsch=1&sr=10&pageNum=1
http://cache.nxp.com/files/sensors/doc/data_sheet/MPL3115A2.pdf?fsch=1&sr=10&pageNum=1
http://cache.nxp.com/files/sensors/doc/data_sheet/MPL3115A2.pdf?fsch=1&sr=10&pageNum=1
http://dragdrop.co.uk
http://facebook.com/dragdropmag

Armcode for Beebsters
Having learnt machine code on
the BBC Micro there were some
aspects of Arm machine code
with which I initially struggled.

So I thought I would put
together a couple of articles (this
issue of Drag 'N Drop and the
next) to help people reared on 8-
bit 6502 assembly transfer their
skills to writing 32-bit Armcode.

All versions of BBC Basic have
a built-in assembler, something
which was unique in Beeb days
(contemporary micros just left
programmers to "hand assemble"
code and poke it into memory.) A
typical assembly looks like:

DIM code 100
FOR pass=0 TO 2 STEP 2
P%=code
[OPT pass
\...
\assembly code
\...
]NEXT

Memory is reserved with the DIM
statement and P% is set to the
address of code where the
machine code begins.

The above framework is the same
whether you are on 6502 or
Armcode.

On the BBC Micro you could
assemble code in odd corners of
memory by setting P% directly:

FOR pass=0 TO 2 STEP 2
P%=&900
[OPT pass
...

This is dodgy on RISC OS
because there is no guarantee
which part of the memory your
program resides in.

PAGE is normally get &8F00
so you can sometimes get away
with resetting PAGE to a higher
value and assembling at &8F00
but isn't advisable.

You should always DIMension
a block of memory on RISC OS to
assemble code in.

6502 programs generally
always end with an RTS to get
back to Basic:

oswrch=&FFEE
DIM code 20

P%=code
[
LDA #ASC"A":JSR oswrch \code for A
RTS \return to BBC Basic

Before Jumping to the
SubRoutine the 6502 processor
pushes the return address (the
address in the Program Counter)
onto the stack. When the RTS is
encountered the address pulled
from the stack and put onto the
Program Counter so execution
continues where it left off.

At first sight there seems to be
no equivalent of RTS in Armcode.
How do you return to Basic after
the following?

MOV R0,#ASC"A" \Ascii code for A
SWI "OS_WriteC" \write it

In Armcode the Program Counter
is held in Register 15. It's more
commonly called "the PC" instead
of "Register 15". Before a
subroutine, a copy of the PC is
put into Register 14 (R14). R14 is
also called the link register or LR
for short.

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 30

http://dragdrop.co.uk
http://facebook.com/dragdropmag

256 colour palette switching
One of the few drawbacks of
RISC OS 5 compared to earlier
versions of the operating
system is that the hardware
can only display Modes with
256 (or more) colours.

The lower colour depths (2-, 4-
or 16-colour Modes) available on
RISC OS 2-4 were useful for
animation. This was achieved by
palette switching using VDU 19
but these Modes aren't available
on the Pi.

Whilst VDU19 can still be used
in 256 colour modes of the Pi the
shade of the colours can only be
subtly altered and not switched to
another colour to achieve
animated effects.

The trick I'll reveal in this article
is to get a short machine code
routine to scan the screen and
change pixels of a specified
colour to another.

It is necessary to understand
the relationship between colours
as Basic sees them and how the
display hardware sees them.

There are 64 colours available

with the COLOUR and GCOL
statements numbered 0 to 63. 64
to 127 are the same as 0 to 63
and 128 to 255 the same as 0-
127 but set the text background in
the COLOUR statement.

Bits 0-1 specify the amount of
red, bits 2-3 the green and 4-5
yellow.

Number 15 (%001111, green
plus red) is a bright yellow colour
and the following program plots a
yellow pixel at the top left hand
corner of the screen.
 10 REM Program 1
 20 MODE 13
 30 PRINT
 40 GCOL 0,3
 50 PLOT 69,0,1023
 60 DIM T 8
 70 !T=149:T!4=-1
 80 SYS"OS_ReadVduVariables",T,T
 90 R=!T
 100 PRINT POINT(0,1023)
 110 PRINT ?R
The pixel is then read back using
Basic's POINT statement which
gives 15 as you would expect.
However the byte stored in the
screen ram (peeked in line 110) is
different, it's 119.

What happens is the bits in the
Basic colour are all repositioned
in the screen colour as shown in
Figure 1.

R0G0R1B0R2G1G2B1

R0R1R2G0G1G2B0B1

BBC Basic

Screen pixels

B0B1

B0B1 G0G1 R0R1O/ O/

G0G1 R0R1

128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

RTGT

RTGT O/ O/ O/ O/ O/ O/

COLOUR
GCOL

TINT

Figure 1

The 'tint' is a two bit value used
by Basic to brighten or darken its
64 colours thereby achieving the
64*4=256 colours (although only
64 are available at one time)

As you can see it's a dog's
breakfast but a study of our
yellow pixel will make things
clear. It starts off in Basic as:

G0G1 R0R1O/ O/ O/ O/

8 4 2 1

15

There are four possible screen

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 34

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Fibonacci Wallpaper
This short program shows off
the power and speed of BBC
Basic on the Raspberry Pi by
generating patterned wallpaper
on the screen.

It uses the Fibonacci sequence
first documented by the 12th
century Italian mathematician.
Each number in the sequence is
the sum of the previous two. If
you reduce the result modulo 10
then the pattern repeats after a
while.

This repetition is exploited by
the program. The starting
numbers are chosen at random
between 1 and 9. These are
indexes into a table of colours. xw
and yw are the dimensions of the
rectangle chosen at random but
within the limits of the Mode 13
screen, 320 pixels across and
256 down.

The address of the top left
hand corner of screen ram is
found by a SYStem call and
stored in R. S is the offset from
this address.

There are 320 pixels across

the Mode 13 screen, the
rectangle may be smaller than
this however so once a line of
pixels of length xw is filled 320 is
added to S.

If you see a design you like
you can tap the S key to save it
as a sprite to the current
directory. It can be loaded into
Paint and perhaps incorporated
into scenery sprites for games.

FibWall listing
 10REM Fibonacci Wallpaper
 20REM By C.R.Dewhurst
 30REM (c) Drag 'N Drop October
2016
 40MODE 13:OFF
 50DIM table 9
 60!table=149:table!4=-1
 70SYS "OS_ReadVduVariables",tab
le,table
 80R=!table
 90N=0
 100REPEAT
 110 CLS
 120 xw=RND(320)
 130 yw=RND(255)
 140 S=0
 150 FOR x=0 TO 9
 160 x?table=RND(255)
 170 NEXT
 180 n1=RND(9)
 190 n2=RND(9)

 200 FOR Y=1 TO yw
 210 FOR X=1 TO xw
 220 S?R=n2?table
 230 temp=n1
 240 n1=n2
 250 n2=(n2+temp)MOD10
 260 S=S+1
 270 NEXT
 280 S=S+(320-xw)
 290 NEXT
 300 A=INKEY(200)
 310 IF A=ASC"S" PROCsave
 320UNTIL 0
 330END
 340:
 350DEF PROCsave
 360VDU24,0;1023-yw*4;xw*4;1023;
 370a$="screensave fib"+LEFT$("00
0",3-LENSTR$N)+STR$N
 380N=N+1
 390OSCLI a$
 400ENDPROC

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 39

http://dragdrop.co.uk
http://facebook.com/dragdropmag

MemAlloc module
This is a relocatable module
originally dating from the early
days of RISC OS which has
been improved and updated to
run on the Raspberry Pi.

It allows you to control various
aspects of RISC OS – size of the
Ram disc, system sprite area, etc.
– from within programs by use of
nine extra 'star' commands.

The listing assembles and
saves the module. To install
double click MemAlloc, press
Ctrl+F12 and type *Help
MemAlloc to list the commands
and *Help command (where
command is one of the
commands provided) for further
information.

MemAlloc listing
 10REM MemAlloc
 20REM Updated for 32 bit machin
es
 30REM by Drag 'N Drop, October
2016
 40
 50i1$="If it is not possible to
 obtain this amount of memory, "
 60i2$="If it is not possible to
 do this, "

 70o$="the optional * command wi
ll be executed."+CHR$13
 80
 90DIM Q% 3000
 100FOR I%=0 TO 3 STEP 3
 110P%=0
 120O%=Q%
 130[OPT I%+4
 140.header
 150EQUD 0 ; Start offset
 160EQUD 0 ; Initialisation offse
t
 170EQUD 0 ; Finalisation offset
 180EQUD 0 ; Service call handler
 offset
 190EQUD title ; Title string off
set.
 200EQUD help ; Help string offse
t.
 210EQUD commands ; Help and comm
and keyword table
 220EQUD 0
 230EQUD 0
 240EQUD 0
 250EQUD 0
 260
 270\for 32 bit compatibility
 280EQUD 0
 290EQUD module_flags
 300.module_flags EQUD 1
 310
 320\Title string
 330.title
 340EQUS "MemAlloc"+CHR$0
 350ALIGN
 360
 370\Help string
 380.help

 390EQUS "MemAlloc "+CHR$9+"0.2 "
+MID$(TIME$,5,11)+CHR$0
 400ALIGN
 410
 420\Command table
 430.commands
 440FNassemblecommands
 450EQUD 0 ;end of command table
 460
 470\Code for *SystemSize
 480.code1
 490STMFD sp!,{lr}
 500MOV R2,#&0800
 510BL getnum
 520MOV R0,#0
 530BL doit
 540LDMFD sp!,{pc}
 550
 560.help1
 570EQUS"*SystemSize allows you t
o set the system heap size in Kbyt
es. "
 580EQUS i1$
 590EQUS o$
 600.syntax1
 610EQUS"Syntax: *SystemSize <siz
e> [<*command>]"+CHR$0
 620ALIGN
 630
 640\Code for *RMASize
 650.code2
 660STMFD sp!,{lr}
 670MOV R2,#&1000
 680BL getnum
 690MOV R0,#1
 700BL doit
 710LDMFD sp!,{pc}
 720.help2

Drag'N Drop Winter 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 39

http://dragdrop.co.uk
http://facebook.com/dragdropmag

 730EQUS"*RMASize allows you to s
et the RMA size in Kbytes. "
 740EQUS i1$
 750EQUS o$
 760.syntax2
 770EQUS"Syntax: *RMASize <size>
[<*command>]"+CHR$0
 780ALIGN
 790
 800\Code for *ScreenSize
 810.code3
 820STMFD sp!,{lr}
 830MOV R2,#&01E0
 840BL getnum
 850MOV R0,#2
 860BL doit
 870LDMFD sp!,{pc}
 880.help3
 890EQUS"*ScreenSize allows you t
o set the screen memory size in Kb
ytes. "
 900EQUS i1$
 910EQUS o$
 920.syntax3
 930EQUS"Syntax: *ScreenSize <siz
e> [<*command>]"+CHR$0
 940ALIGN
 950
 960\Code for SpriteSize
 970.code4
 980STMFD sp!,{lr}
 990MOV R2,#&1000
 1000BL getnum
 1010MOV R0,#3
 1020BL doit
 1030LDMFD sp!,{pc}
 1040.help4
 1050EQUS"*SpriteSize allows you t
o set the system sprite size in Kb
ytes. "
 1060EQUS i1$
 1070EQUS o$

 1080.syntax4
 1090EQUS"Syntax: *SpriteSize <siz
e> [<*command>]"+CHR$0
 1100ALIGN
 1110
 1120\Code for FontSize
 1130.code5
 1140STMFD sp!,{lr}
 1150MOV R2,#&0400
 1160BL getnum
 1170MOV R0,#4
 1180BL doit
 1190LDMFD sp!,{pc}
 1200.help5
 1210EQUS "*FontSize allows you to
 set the font cache size in Kbytes
. "
 1220EQUS i1$
 1230EQUS o$
 1240.syntax5
 1250EQUS"Syntax: *FontSize <size>
 [<*command>]"+CHR$0
 1260ALIGN
 1270
 1280\Code for RAMFSSize
 1290.code6
 1300STMFD sp!,{lr}
 1310MOV R2,#&1000
 1320BL getnum
 1330MOV R0,#5
 1340BL doit
 1350LDMFD sp!,{pc}
 1360.help6
 1370EQUS "*RAMFSSize allows you t
o set the RAM disc size in Kbytes.
 "
 1380EQUS i2$
 1390EQUS o$
 1400.syntax6
 1410EQUS "Syntax: *RAMFSSize <siz
e> [<*command>]"+CHR$0
 1420ALIGN

 1430
 1440\Code for RMAFree
 1450.code7
 1460STMFD sp!,{lr}
 1470MOV R2,#&1000
 1480BL getnum
 1490STMFD sp!,{R1,R2}
 1500MOV R0,#5
 1510SWI "OS_Module"
 1520LDMFD sp!,{R0,R1}
 1530SUBS R1,R1,R2
 1540BMI exit
 1550BEQ exit
 1560STMFD sp!,{R0,R1}
 1570MOV R0,#1
 1580SWI "OS_ReadDynamicArea"
 1590MOV R0,R1
 1600LDMFD sp!,{R1,R2}
 1610ADD R2,R2,R0
 1620MOV R0,#1
 1630BL doit
 1640.exit LDMFD sp!,{pc}
 1650.help7
 1660EQUS "*RMAFree allows you to
set the free space in the RMA in K
bytes. "
 1670EQUS i2$
 1680EQUS o$
 1690.syntax7
 1700EQUS "Syntax: *RMAFree <free
space> [<*command>]"+CHR$0
 1710ALIGN
 1720
 1730\Code for SpriteFree
 1740.code8
 1750STMFD sp!,{lr}
 1760MOV R2,#&1000
 1770BL getnum
 1780STMFD sp!,{R1,R2}
 1790MOV R0,#8
 1800SWI "OS_SpriteOp"
 1810SUB R2,R2,R5

Drag'N Drop Winter 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 40

http://dragdrop.co.uk
http://facebook.com/dragdropmag

 1820LDMFD sp!,{R0,R1}
 1830SUBS R1,R1,R2
 1840BMI exit2
 1850BEQ exit2
 1860STMFD sp!,{R0,R1}
 1870MOV R0,#3
 1880SWI "OS_ReadDynamicArea"
 1890MOV R0,R1
 1900LDMFD sp!,{R1,R2}
 1910ADD R2,R2,R0
 1920MOV R0,#3
 1930BL doit
 1940.exit2 LDMFD sp!,{pc}
 1950.help8
 1960EQUS "*SpriteFree allows you
to set the free space in the syste
m sprite area in Kbytes. "
 1970EQUS i2$
 1980EQUS o$
 1990.syntax8
 2000EQUS "Syntax: *SpriteFree <fr
ee space> [<*command>]"+CHR$0
 2010ALIGN
 2020
 2030\Code for FontFree
 2040.code9
 2050STMFD sp!,{lr}
 2060MOV R2,#&400
 2070BL getnum
 2080STMFD sp!,{R1,R2}
 2090MOV R0,#0
 2100SWI "Font_CacheAddr"
 2110SUB R2,R2,R3
 2120LDMFD sp!,{R0,R1}
 2130SUBS R1,R1,R2
 2140BMI exit3
 2150BEQ exit3
 2160STMFD sp!,{R0,R1}
 2170MOV R0,#4
 2180SWI "OS_ReadDynamicArea"
 2190MOV R0,R1
 2200LDMFD sp!,{R1,R2}

 2210ADD R2,R2,R0
 2220MOV R0,#4
 2230BL doit
 2240.exit3 LDMFD sp!,{pc}
 2250.help9
 2260EQUS "*FontFree allows you to
 set the free space in the font ca
che in Kbytes. "
 2270EQUS i2$
 2280EQUS o$
 2290.syntax9
 2300EQUS "Syntax: *FontFree <free
 space> [<*command>]"+CHR$0
 2310ALIGN
 2320
 2330.getnum
 2340STMFD sp!,{lr}
 2350MOV R1,R0
 2360MOV R0,#&20000000
 2370SWI "OS_ReadUnsigned"
 2380MOV R2,R2,LSL #10
 2390.loop LDRB R0,[R1,#0]
 2400CMP R0,#0
 2410CMPNE R0,#10
 2420CMPNE R0,#13
 2430MOVEQ R1,#0
 2440LDMEQFD sp!,{pc}
 2450CMP R0,#32
 2460ADDNE R1,R1,#1
 2470BNE loop
 2480.loop2 LDRB R0,[R1,#0]
 2490CMP R0,#0
 2500CMPNE R0,#10
 2510CMPNE R0,#13
 2520MOVEQ R1,#0
 2530LDMEQFD sp!,{pc}
 2540CMP R0,#32
 2550ADDEQ R1,R1,#1
 2560BEQ loop2
 2570LDMFD sp!,{pc}
 2580
 2590.doit

 2600STMFD sp!,{R0-R2,lr}
 2610SWI "OS_ReadDynamicArea"
 2620LDMFD sp!,{R0,R3}
 2630LDMFD sp!,{R2,lr}
 2640RSB R1,R1,R2
 2650STMFD sp!,{R3,lr}
 2660SWI "XOS_ChangeDynamicArea"
 2670LDMFD sp!,{R0,lr}
 2680MOVVC pc,lr
 2690STMFD sp!,{lr}
 2700TEQ R0,#0
 2710SWINE "OS_CLI"
 2720LDMFD sp!,{pc}
 2730
 2740]
 2750NEXT
 2760
 2770a$="*SAVE MemAlloc "+STR$~Q%+
" +"+STR$~P%
 2780PRINT a$
 2790OSCLI a$
 2800*settype memalloc module
 2810END
 2820
 2830DEF FNassemblecommands
 2840RESTORE
 2850FOR com%=1 TO 9
 2860READ command$
 2870[OPT I%+4
 2880EQUS command$+CHR$0
 2890ALIGN
 2900EQUD EVAL("code"+STR$com%)
 2910EQUD &FF0001
 2920EQUD EVAL("syntax"+STR$com%)
 2930EQUD EVAL("help"+STR$com%)
 2940]
 2950NEXT
 2960=0
 2970
 2980DATA SystemSize,RMASize,Scree
nSize,SpriteSize,FontSize,RAMFSSiz
e,RMAFree,SpriteFree,FontFree

Drag'N Drop Winter 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 41

http://dragdrop.co.uk
http://facebook.com/dragdropmag

Autofocus
Usually on RISC OS you have
to click somewhere in a
desktop window for it to gain
the input focus. This short
machine code utility
automatically focuses the input
on the window under the
pointer.

The listing assembles and
saves a file called AF. Double
click AF to install. To quit, right
click on the Raspberry icon, click
menu over Autofocus in the
Application tasks section and
choose Quit.

One easy improvement you
can make is to package up the AF
file inside an application with an
application sprite, !Boot and !Run
file.

AutofocSrc listing
 10REM Autofocus
 20REM Automatically focuses inp
ut
 30REM on window under pointer.
 40REM Drag 'N Drop October 2016
 50
 60DIM code 200
 70FOR pass=0 TO 3 STEP 3
 80P%=0
 90O%=code

 100[OPT pass+4
 110
 120MOV R0,#200
 130LDR R1,task
 140ADR R2,name
 150SWI "Wimp_Initialise"
 160
 170.loop
 180MOV R0,#0
 190ADR R1,block
 200SWI "Wimp_Poll"
 210TEQ R0,#17
 220TEQNE R0,#18
 230BNE skip
 240LDR R0,[R1,#16]
 250TEQ R0,#0
 260BEQ exit
 270.skip
 280SWI "Wimp_GetPointerInfo"
 290LDR R0,[R1,#12]
 300LDR R2,temp
 310TEQ R0,R2
 320BEQ loop
 330STR R0,temp
 340MOV R8,R1
 350MVN R1,#0
 360MOV R2,#0
 370MOV R3,#0
 380MVN R4,#0
 390MVN R5,#0
 400SWI "Wimp_SetCaretPosition"
 410MOV R1,R8
 420B loop
 430
 440.exit
 450SWI "Wimp_CloseDown"
 460MOVS PC,R14
 470.temp EQUD 0

 480
 490.task EQUS "TASK"
 500.name EQUS "Autofocus"+CHR$0:
ALIGN
 510.block EQUS STRING$(32,CHR$0)
 520
 530]
 540NEXT
 550a$="*SAVE AF "+STR$~code+" +"
+STR$~P%
 560PRINT a$
 570OSCLI a$
 580*settype af absolute

Line 60 reserve 200 bytes of
memory to assemble code into.

Lines 70-100 assemble code at
O% but as if to run at P% by
using OPT with bit 3 set.

Lines 120-150 is the equivalent
of SYS "Wimp_Initialise",200,
"TASK","Autofocus".

Lines 180-200 call Wimp_Poll
and test for reason codes 17,18
(message).

Lines 280-410 obtain position
of pointer and mouse button
state, offset 12 is window handle
under pointer. If same as last time
round loop skip. Otherwise set up
parameter block and call SWI to
focus the input. n

Drag'N Drop Autumn 2016 | dragdrop.co.uk | facebook.com/dragdropmag | Page 42

http://dragdrop.co.uk
http://facebook.com/dragdropmag

	<Chapter>
	How do I...?
	News and App Updates
	Files of the World
	Forth on the Pi
	M/Code Scrolling Stars
	Floozy
	Floozy
	Python Primary School
	Armcode for Beebsters
	256 colour palette switching
	Fibonacci Wallpaper
	MemAlloc module
	Autofocus

