

Copyright ©2024 Drag ‘N Drop. All rights reserved.
Produced on RISC OS computers

This issue has been blessed with contributions from
the following people:

Norman Lawrence (RockPro 64)
Richard Baraniak (RISC OZ)
Christopher Dewhurst (everything else)

Programs have been tested on RISC OS 5 running on
the Raspberry Pi. Compatibility with other versions
of RISC OS is not guaranteed.

The views expressed in this magazine are not
necessarily those of the editor. Alternative views are
always welcome and can be expressed by either
writing an article or a short editorial.
All articles and advertisements are published in good
faith. No materials in this publication are meant to be
offensive or misleading. If you come across
something you believe is either of the above please
contact the editor using the details below.

Contact Information
Editor: Christopher Dewhurst
Email: editor@dragdrop.co.uk
www.dragdrop.co.uk

Contents
Beginners and Wimp Library 4
News and Apps ... 8
Type Play.. 10
Easier Menus ... 14
RISCoffee ... 17
SamPlay ... 20
WaveSynth Samples24
RockPro 64 .. 30
Noah’s Arc.. 34
RISC OZ.. 39
Editorial
Happy new year and welcome to what is a bumper edition of Drag ’N Drop, in no
small part due to our contributors − special thanks to them. I don’t know about
you but I’m noticing more developers returning to the RISC OS scene as they
realise it is alive and not just a hobbyist platform. Please
give them your support. The ever green (in more ways
than one) RISC OS is attracting new people too. Three
RISC OS shows have been announced so far this year,
get along to one if you can!

Contents

RISC OS mouse

Select

Menu
Adjust

Select

Menu Adjust

Scroll wheel mouse 3 button mouse

Selectc click (or just click) means click
the left button, ‘menu over’ means click
the middle button.

Entering listings
You can type in programs in a number
of ways:

1. Very simple prigrams can be
entered in a task window, menu over
Raspberry icon Task Window ^F12.
Cursor keys and graphics will not work.

2. With a text editor like Edit, in
Apps folder on the iconbar. Select
double click, menu over Edit’s iconbar
icon, Create>BASIC. For other langu-
ages type in at the bottom. Save with F3
and double click to run.

3. Use the built-in editor (single
tasking). Press F12, type Basic
<return> then EDIT <return>. Refer to

Chapter 26 of the BBC Basic Reference
Manual free at riscosopen.org.

Program lines are numbered when
using. EDIT but it can be used in
GraphTask armclub.org.uk/free/. You
can enter programs withoiut EDIT and
run Basic programs that use simple
graphics (not sprites) in a window on
the desktop.

Program lines aren’t numbered in
Drag ‘N Drop listings, it is assumed
you use Edit. Each line starts with
space so you know when to press
Return. To find out the line number you
are on press f5 in Edit.

Start of line has a space
Continuation of line (no space)

 PROCWRICONF(W1,6,10<<28,15<<28): PROCWR

ICONT(W1,6,"Process")

More memory for applications
You may need to reserve more memory
for a program. Adjust-click on the
Raspberry icon and under Application
tasks click and drag the Next slide bar
out to the right.

What does ‘currently selected
directory’ mean?
Articles may tell you to set the CSD
(currently selected directory). Click
menu over filer window and choose Set
directory ^W. It’s where the computer
stores the file when you type SAVE
“myprog”.

What‘s an Applcation Directory?
Application directories begin with a !
called 'pling', for example 'pling boot'.
To open (without running) it, hold
down the shift key and double click
select to open the directory.

4 Drag ‘N Drop | Winter 2024 | www.dragdrop.co.uk

Beginners

MODE problems
If you get a ’Screen mode not available’
or blank screens try one or more of the
following:

1. Install the Anymode module from
pi-star.co.uk/anymode, place it in
!Boot.Choices.Boot. Predesk.

2. Hold down Shift and double click
!Boot, in the root directory of the SD
Card, that is SDFS::RISCOSPi.$.!Boot.
Locate the Loader file and with Shift
held down double click it to open it.
Create a text file in Edit with the
following line (press Return at the end):
disable_mode_changes

Save it inside Loader as CMDLINE/TXT
and restart your machine.

3. Install ADFFS from forums.jaspp.
org.uk/forum/viewtopic.php?t=483l.

4. Aemulor can interfere with screen
modes. Menu over iconbar > Quit >
Emulator too.

Sounds are strange
Some listings need the free RDSP
module installed. Download it from
www.amcog-games.co.uk/rdsp.htm.

where you’ll find instructions on how
to install it.

WIMP library
Many programs in Drag ’N Drop run in
a window on the desktop). They use a
set of standard procedures to create and
deal with windows, icons and menus.

Rather than publish them with every
listing they are collected here. Most of
them are taken from The Application
Tutorial and Listings Book available
from Drag ’N Drop Publications. If
you’re interested in writing desktop
applications then you should consider
buying this book.

 DEF FNMKWINDOW

 READ $T,X,Y,W,H

 FOR I=0 TO 84 STEP 4

 READ A$

 I!B=EVALA$

 NEXT

 T+= LEN $T+1

 SYS "Wimp_CreateWindow",,B TO X

 =X

Basic’s DATA pointer is assumed to be
at a line giving window title, position,
size, colours, flags comes before this is

called. Memory blocks T and B must
have been set up. Makes a window
returning handle in X.

 DEF PROCMKICON(H,X,Y,W,D,F,A$,V)

 $U=A$: RESTORE +1

 DATA H,X,Y,X+W,Y+D,F, U,V,LEN A$+1

 FOR I=0 TO 32 STEP 4

 READ B$: I!B = EVAL B$

 NEXT : U+= LEN A$+1

 SYS "Wimp_CreateIcon",,B TO I

 ENDPROC

Make an icon, handle is returned in I.
H=window handle, X,Y=bottom left,
W,D=dimensions, F=flags, A$=text and
V validation string (1 if none)

 DEF PROCRDICON(W,H)

 !B=W : B!4=H

 SYS "Wimp_GetIconState",,B

 A$=$(B!28) : X = B!24

 ENDPROC

Read icon W in window H text in A$
and flags in X.

 DEF PROCWRICONT(W,H,B$)

 PROCRDICON(W,H)

 B!8=0 : B!12=0

 $(B!28)=B$

 SYS "Wimp_SetIconState",,B

www.dragdrop.co.uk | Winter 2024 | Drag ’N Drop | 5

WIMP library

 ENDPROC

Updates text B$ in icon H in window
W.

 DEF PROCWRICONF(W,H,X,Y)

 !B=W : B!4=H : B!8=X : B!12=Y

 SYS "Wimp_SetIconState",,B

 ENDPROC

Updates icon W’s flag in Window H, X
is the EOR word and Y the clear word,
ie flag = (flag AND NOT X) EOR Y.

 DEF PROCMKMENU(A)

 READ $T

 FOR I=0 TO 24 STEP 4

 READ A$: I!A=EVAL A$

 NEXT : T+= LEN $T+1

 ENDPROC

DATA line before this is called with
menu header details. Sets up menu
header at memory address A.

 DEF PROCMKENTRY(W,X,Y,H,F,A$,V)

 $U=A$

 RESTORE+1

 DATA Y,H,F,U,V,LEN $U

 FOR I=0 TO 20 STEP 4

 READ B$

 I!(W+X) = EVAL B$

 NEXT : U+= LEN $U + 1

 ENDPROC

Basic DATA line before this is called
giving menu item details. W=header
address, X=offset (multiple of 24),
Y=work flags, H=submenu pointer (–1
if none). F, A$ and V as for
PROCMKICON. Add entry for menu
already set up.

 DEF PROCMKSPRITE

 READ A$,W,H,MD,PW,NC

 SYS "OS_SpriteOp",&10F,S,A$,-(NC<>0),W,

H,MD

 SYS "OS_SpriteOp",&125,S,A$,-1 TO ,,,,C

 IF NC FOR X=0 TO NC*8 STEP 8:READ C!X:

NEXT

 READ J$: J=EVAL("&"+J$): K=PW

 FOR Y=H-1 TO 0 STEP -1: FOR X=0 TO W-1

 SYS "OS_SpriteOp",&12A,S,A$,X,Y,J

 J=J>>(32 DIV PW): K-=1 : IF K=0 K=PW: R

EAD J$: J=EVAL("&"+J$)

 NEXT: NEXT

 ENDPROC

Create a sprite. DATA pointer must be
be at a line giving sprite's name, width,
height, mode, pixels per word (eg 32
for 2-colour) and number of colours
before PROCMKSPRITE called. If
number of colours >0 the following
words give RGB palette entries. Shape

DATA then given as words (without &)
in compacted format. Intended for use
with 2-, 4- and 16-colour sprites.

 DEF PROCPROGINFO

 RESTORE +1

 DATA About this program,0,0,500,200,X,Y

,X+W,Y+H,0,0,-1,&84001012,&1000207,&C010

3,0,-H,W,0,&13D,0,1,0,T,0,0,0

 W0=FNMKWINDOW: $V="R2"

 DATA Name,Purpose,Author,Version

 DATA Application Demo,Drag N Drop,n.m (

dd-mm-yyyy)

 FOR IC=0 TO 7

 READ A$:LOCAL DATA

 IF IC<4 PROCMKICON(X,0,-50-IC*50,130,50

,&97000301,A$,0)

 IF IC>3 PROCMKICON(X,140,-50-(IC MOD4)*

50,350,50,&9700010D,A$,V)

 RESTORE DATA

 NEXT

 ENDPROC

Create ‘About this program’ window
giving it handle W0. Adust 3rd line of
data as needed. Needs
FNMKWINDOW and FNMKICON.

Application Directories
Type-in applications for RISC OS in
the magazine are usually presented as
single listings in BBC Basic for

6 Drag ‘N Drop | Winter 2024 | www.dragdrop.co.uk

WIMP library

convenience and space reasons. The
standard 640k of memory allocated
under Next in the Tasks window is
more than enough for most Drag ’N
Drop applications.

The programs can be put into proper
RISC OS application directories as
follows. Create a new directory whose
name begins with a pling (!) followed
by the application name eg !Txt2Draw.
Hold down shift and select double click
to open it.

Copy the application typed in from
Drag ’N Drop into the application
directory. It is conventional to rename
this main program !RunImage but it
isn’t compulsory.

Either run the program below or
create your own application sprite, it
should be no more than 68×68 pixels
big. Ensure the sprite name is identical
to the application directory name (but
in lower case) and save it inside the
application directory.

 DIM S 210

 !S=210:S!8=&10:SYS "OS_SpriteOp",&109,S

 DATA !myapp,32,32,25,32,1, &BFE3F200,&A

8540000

 DATA 0,0,BC383FBF,FE3C7F7F,EF7C7776,C76

E77E6,76E3FE6,F7FF3FE6,EECF7776,FFCFF77F

,7DE7EFBF,0,0,F7C00,66C00,6E800,7E400,76

000,66000,6F000,0,7F493FBF,FE3E7F7F,EE63

7776,EE4177E6,FEC1FFE6,7E413FE6,1E637776

,1E3EF77F

 DATA 3F49EFBF,0,0,0

 PROCMKSPRITE

 SYS "OS_SpriteOp",&10C,S,"!Sprites"

 END

Next create two Obey files in the
application directory, one called !Boot
with the following line

iconsprites <obey$dir>.!sprites

and a second Obey file called !Run with
the following lines:

wimpslot -min 32K -max 32K

run <obey$dir>.!RunImage

the K (kilobyte) numbers after
wimpslot command may need to be
adjusted depending on how much
memory the application needs.

Now simply double click the
application to run it.

!MyApp

Have you a story to tell about your
RISC OS computer or even written a

program for it?
Send it to

dragdrop@dragdrop.co.uk. Payment
available for quality RISC OS

journalism.

www.dragdrop.co.uk | Winter 2024 | Drag ’N Drop | 7

WIMP library

RISC OS Shows Galore
2024 looks to be a bumper year for
RISC OS exhibitions. The South West
show takes place in Bristol on Saturday
24th Feburary, doors open 10.30 and
admission is only £6. More details at
riscos-swshow.co.uk.

In the spring there’s the Wakefield
RISC OS show on Saturday 27th April.
The venue is the Cedar Court hotel in
Bradford owing to its sister hotel in
Calder Grove’s continued use for hous-
ing asylum seekers. See wakefield-
show.org.uk for further details.

And after a two year hiatus the RISC
OS London Show returns on 26th Octo-
ber in Harrow. Click along to risc
oslondonshow.co.uk to find out more.

Netsurf 3.11
Netsurf is a free, open-source web
browser for several OS’s and whilst it
lacks the heavyweight code allowing
you to do your online banking (use Iris
for that) it’s still the preferred choice
for basic browsing because it is
compact and fast loading. The huge
number of updates for the package
include improved SVG handling,
bitmaps, text areas, text selection and
the ability to switch CSS off. Just visit
netsurf-browser.org to update your
copy.

TCP/IP Stack 7.04
Not a solution for sore throats, rather in
the computing world a ’stack’ of TCPs
(Transmision Control Protocol) and IPs

(Internet Protocol) is a
standard for computers
sending messages, the basis
of our internet browsing and
most importantly bringing
true wi-fi to RISC OS. Read

more at riscdev.com.

CLFiler – modernises RISC OS and costs less than £15

CLFiler 1.55
Stefan Froeling continues to develop
the feature-rich RISC OS filer, an state
of the art alternative to the elderly one
built into RISC OS which, let’s face it,
looks very retro nowadays. CLFiler
costs 15,97 euros (£13.60) from
riscoscloverleaf.com with regular
updates. CLFiler runs alongside the
usual RISC OS filer so you don‘t even
have to give up habits to try it out.

www.dragdrop.co.uk | Winter 2024 | Drag ’N Drop | 8

News

News and Apps

New venue for RISC OS London show (image: ROUGOL)

BeebIt 0.76
Those who take their diet of retro 8-bit
software on RISC OS should download
an update to the BBC Micro emulator,
BeebIt. The new version fixes display
issues such as a smoother Mode 7 font
and ensures Beebit runs on the latest
RISC OS hardware like the PineBook.
Get along to mjfoot.netlify.app/
bbc.htm.
l 8-Bits will be back next time.

Pluto 3.20
Pluto is a feature-rich freeware news
and email client (named after the dog
who fetched post) and is up to version
3.20, the update mostly streamlines the

app by cleaning out redundant code.
Download your copy from
www.avisoft.f9.co.uk.

Timerun
The latest offering from Amcog is a
vertical-scrolling shoot-em-up game
featuring high standard graphics and
musical accompaniment which we’ve
come to expect from the Amcog.
Timerun costs £9.99 via !Store. It will
be reviewed in the next Drag ’N Drop.

Origyn
The noughties and ’10s
spawned open source, cross-
platform, web browsers −
Otter, Qupzilla and Origyn to
name a few − based on the
Webkit engine used by Macs.
Many retired into oblivion but
Origyn is still popular on
AmigaOS and Michael
Grunditz has been porting it
to RISC OS. It’s in very early
stages but you can show your
support by emailing Michael
at micken@dfupdate.se and

help with testing. A sunshine yellow
could be a regular feature of your
iconbar!

9 Drag ‘N Drop | Winter 2024 | www.dragdrop.co.uk

News

New from Amcog – Timerun (Image: Amcog)

sounds, to reflect the articles on sound
sampling elsewhere in this issue of
Drag ’N Drop.

Simple Type Play
Open a new Draw document. Select the
text (AZ) icon from the toolbox on the
left. Click Menu > Style > Font Name >
Homerton > Bold. Use the Adjust but-
ton so that the menu remains on the
screen. Move the pointer back to the

Ever since the advent of the printed
word and moveable type, people hav-
ing been playing with fonts and
arranging letters from typefaces in an
amusing way.

Invention of rub-down transfers like
Letraset took this to a new level and
with the advent of computer fonts
people went to a messy extreme with
complete trashing of fonts. The original
art form, however, was like a game
with a few simple rules:
l Letters must be from the original
typeface, variants (heavy, italic etc.)
are allowed.
l Letters may not be distorted other
than by translation, rotation and slicing.
l No other graphics (other than empty
space) can be used.
 This is very easy to do in Draw on
RISC OS, the vector drawing package
which has come free with every ver-
sion of the operating system.

We’re going to do some
‘onomatopoeic’ type play, where the
result is a display looking like it

www.dragdrop.co.uk | Winter 2024 | Drag ’N Drop | 10

Cover Story

Type Play
Style menu choose Font size. Replace
the 6.40 at the bottom with 72 (72
points or one-inch).

The RISC OS Select button is better
than other platforms, you would either
have to navigate through the whole
menu structure again or select the type
size and style from a dialogue window
cluttering your work area.

Click anywhere on the Draw docu-
ment and type THUD. Click on the
pointer icon in the toolbox and select
the THUD word. Menu > Select > Con-
vert to Path, move back to the Draw
menu and Style > Line width > 4 amd
Style > Line colour > and choose black
from the top right of the palette.

The result of all this is that the pro-
grammer has been left ‘in the wild’ to
devise ttheir own way of building the
menu block.

In BBC Basic this would typically
involve passing long strings to a
massive procedure which parses it
using MID$, LEFT$, RIGHT$, special
characters like apostrophes, asterisks
etc. representing ticks, submenus and
other flags of menu entries.

There’s certainly no standard way of
going about this and Chris Dewhurst
says in The Application Tutorials and
Listings Book there are about as many
ways of encoding menu data as there
are listings for RISC OS! He opts to set
menus up in a simple manner with just
a couple of standard procedures. Menu
text, colours and flags are spelt out in
full for each item.

Regardless of the method you use,
menus are a pain and whilst I found the
TATALB approach refreshing, I still
thought there was something I could do
make the process less cumbersome.

When it comes to programming
menus in Wimp applications there is an
inconsistency with the RISC OS win-
dow manager. SYS ”Wimp_Create
Window”,,B creates a window for later
use, with parameters given in the block
(B). Since there is the word ‘create’ in
the call you might expect SYS
“Wimp_CreateMenu”,,B to do the
same for menus − initialise a block,
return a handle for later use with SYS
“Wimp_ OpenMenu”,,B.

 Except it doesn‘t. SYS “Wimp_
CreateMenu”,,B in fact tries to display
a menu from a block which the user is
expected to have already set up, by
poking data into memory − precisely
and correctly otherwise the sytem
seizes up.

Apparently, in the original Acorn
Archimedes operating system menus
were put in to the window manager at
the last minute. This would explain
why things work as they do − why
there’s no SYS ”Wimp_Open Menu”
,,B.

www.dragdrop.co.uk | Winter 2024 | Drag ’N Drop | 14

Programming

Easier Menus
At the same time I didn’t want to

constrain the programmer, by insisting
all entries are a uniform colour, for
example, or every entry has to be text.

Firstly I decided that all menu details
are stored as DATA statements, not just
for PROCMKMENU and use a new
procedure for setting up the menu
headers (title bar) which I will list
shortly.

I standardized the data into seven
items, for both menu headers and menu
entries. I’m assuming you have a copy
of TATALB to hand so you can follow
my working in conjunction with Chap-
ter 9.

Param Headers Entries
0 X Instructions Instructions
1 H Colours Workflags
2 W Width of Submenu/

entries window addr
3 F Height of Iconflags

entries
4 A$ Title text Entry text
5 V Validation (0) Validation
6 P Pointer add Pointer add

The Instructions parameter tells the pro-
gram what to do with the following

The majority of windows and icons
on the RISC OS desktop use a standard
palette of 16 Wimp colours (eight greys
and eight colours) which have remained
the same throughout every release of
the operating system.

They were carefully considered as
being suitable for applications when
RISC OS was introduced without being
too intrusive for desktop work. In prac-
tice about 75% of the shades appear and
for some applications the default palette
may not be suitable for people with
visual disabilities or just too limiting.

It‘s possible to customise the Wimp
palette using SYS “Wimp_SetPalette”,,
B where B is a 20 word block giving
the 16 colours. 3 mouse colours and

border in &B0G0R000 format (eg
&00F0F000 is red). Individual colours
cannot be set, the whole palette must be
read using “Wimp_ReadPalette”,,B,
colour(s) amended and the block writ-
ten back. The border colour appears to
be redundant in RISC OS 5.

The demonstration program in List-
ing 1 changes the mouse pointer to
yellow with a red border and makes
colours 8-15 brighter shades, which can
be useful for Draw.

Incidentally, to get the default Wimp
palette simply issue the call SYS
“Wimp_SetPalette” with no parameters.

Customising the Wimp palette opens up a wider
colours in Draw...

17 Drag ‘N Drop | Winter 2024 | www.dragdrop.co.uk

Coffee Break

...but if not chosen care-
fully can result in garish
colours in other apps

Listing 1
 REM adjusting the Wimp palette

 REM (c) Drag N Drop Winter 2024

 DIM block 20*4

 SYS "Wimp_ReadPalette",,block

 block!(8*4)=&F0000000:REM blue

 block!(9*4) =&00F0F000:REM yellow

 block!(10*4)=&00F00000:REM green

 block!(11*4)=&0000F000:REM red

 block!(12*4)=&F000F000:REM magenta

 block!(13*4)=&F0660000:REM dk orange

 block!(14*4)=&60B0F000:REM salmon

 block!(15*4)=&F0F00000:REM cyan

 block!(17*4)=&0000F000:REM mouse 2

 block!(18*4)=&00F0F000:REM mouse 3

 block!(19*4)=&0000F000: REM border

 SYS "Wimp_SetPalette",,block

The RISC OS Style guide seems to
have caused programmers to develop an
allergy to the palette, few colours and
only four or five of the greys are used,
The remainder can be freely changed
without resulting in a garish desktop.
l Next time in Drag ‘N Drop we‘ll
present a desktop palette editor.

Applications

Palette
Remember that desktop palette editor in previous versions
of RISC OS? We don’t know why it was taken out either
but you can have it back with our type-in app.

Impression to HTML
Convert your Impression documents for web browsing
with ease. Full listing.

www.dragdrop.co.uk | Winter 2024 | Drag ’N Drop | 18

Coffee Break

 Noah’s Arc
Continuing our delve into the past while learning all about
programming your computer.

. . . Plus all your faves!

Next time in Drag ’N Drop...

SamPlay is an application which can
play sound samples of type &b3c
(Armadeus) format, an audio standard
on RISC OS. It’s written in BBC Basic
and provides editing functions like
fading, cropping and cutting normally
only found in commercial software.

Positions within the sample can be
selected with precision, down to sample
number.

Edited samples may be saved for
processing − see the article on playing
samples with WaveSynth elsewhere in
this issue of Drag ‘N Drop.

Once you have typed in the listing
and fully debugged it, double
click it and SamPlay will park
its orange icon on the iconbar.
A window will open and depending on
how much memory was in the Next
slot, the maximum sample size will be
displayed at the bottom.

Drag an Armadeus file onto the
SamPlay window and its waveform will
be shown in orange on black. The
window tiutle bar will show the

filename plus sample rate in Hz.
Clickung and dragging on the

waveform will select (invert) the
selected part of the waveform. Exact
points in the sample may be selected by
bumping the arrows next to Start and
End, or typing in the writeable icons.
The equivalent time in seconds to 3 d.p.
will update in the boxes to the right.

The group of eight icons on the near
right apply effects to the selection. For
example, fade out will gradually reduce
the amplitude to zero over the specified
period.

Three of the icons are coloured
orange indicating caution. Crop takes
out the selection and discards the rest,
displaying the cropped as a new

20 Drag ‘N Drop | Winter 2024 | www.dragdrop.co.uk

Application

waveform. Cut has the opposite effect,
the selection is discarded and parts
either side spliced to make a new
waveform.

If the sample has just been loaded or
edited, click Make to make up the
sample in the internal format required
by RISC OS then click Play. Just click
Play after that. Alter the pitch by
adjusting the number next to Pitch,
which the 16-bit pitch in Basic's SOUND
statement in hex - &3000 is the C
below middle C.

Clicking the Armadeus icon bottom
right will save the sample using an
incremental serial number, for example
if the file is BOOM, clicking once will
save it as BOOM1, then BOOM2 etc. If

SamPlay

The WaveSynth module built into every
version of RISC OS is the one which
plays the ‘beep’ sound when your com-
puter starts up and usually accompanies
errors displayed on the desktop.

It’s also the default sound when you
type SOUND 1,-15,53,20 or similar in
BBC Basic. You can see this when you
type *voices. At the top you see chan-
nel 1 has been assigned to voice 1,
WaveSynth-Beep.

WaveSynth is capable of much more
than providing this rather pathetic beep,
however, and one of those capabilities
is to play sound samples. By the end of
the article you can play all those dog
barks and laser gun effects you down-
loaded from the internet, or even
sampled yourself, to accompany your
games and presentations.

You don’t need to go to the complex-
ity of writing machine code voice
generators, WaveSynth can do it for
you. All you need to know is how to
make new ‘wave tables’.

A wave table is a file telling RISC

OS not only what sample to play (the
wave data) but also how to play it. To
do this we get WaveSynth to create a
sort of sibling of itself (called an
‘instantiation’) and you can then ‘play’
your samples with the regular BBC
Basic SOUND statement.

The Programmer’s Reference
Manual devotes just four pages to the
workings of WaveSynth, most of it
taken up by an abstruse listing. The
source code for WaveSynth at
www.github.com isn’t much clearer.

To begin to understand it we need to
cover some digital sound theory, it‘s not
that scary and I won’t go into too much
detail.

When the computer plays a sound, it
sends a byte of sample data to the
speaker every 48 millionths of a sec-
ond, which is to say the sample period
is 48 microseconds.

Looked at another way, 1,000,000
divided by 48 = 28,033 bytes are send
to the speaker every second.

This sample rate is what you read

24 Drag ‘N Drop | Winter 2024 | www.dragdrop.co.uk

Feature

WaveSynth Samples
about in digital sound literature quoted
in hertz (Hz) or kiloHertz (kHz). You
divide into a million to get back to the
sample period, eg 1,000,000 / 44,100
Hz = 23 microseconds for CD-quality.

The computer’s sample period of 48
microseconds can be changed − see
later. Under normal circumstances eight
bits (one byte) represents amplitude.
Think of a speaker cone vibrating in
and out.

Many sound samples on the internet
are in WAV format, filetype &fb1. To
use these samples with WaveSynth they
need to first be converted signed, mono,
8-bit format known as Armadeus, file
type &d3c.

The sample period is stored in a 1-
byte header before the wave form itself.
Armadeus data then has to be converted
to ‘logarithmic‘ format. or ‘log’ for
short, used by the RISC OS sound
system. Listing 1 is single tasking but it
will do the job.

Listing 1 Wav2d3e
 REM WAV to Armadeus

 REM (c) Drag N Drop Winter 2024

 ON ERROR CLOSE#0:PRINT REPORT$+" at ";E

The ROCKPro64, features a Rock-
chip RK3399 hexa-core System on
Chip (SoC) clocked at 1.8 GHz as well
as a quad-core Mali-T860 MP4 GPU.

With a footprint of 125 × 80 × 19mm
the board is much larger than a Rasp-
berry Pi (85× 56×17mm). It’s available
with either 2 or 4 GB of memory,
HDMI output supporting up to 4K, two

I was first introduced to the Rock
Pro64 single board computer while
watching Christopher Barnett’s
Youtube channel “Explaining
Computers”. The RockPro64 is a pow-
erful single board computer from
Pine64 launched in 2018 with the
designation of LTS (Long Term Sup-
ply) and can still be purchased in 2024.

www.dragdrop.co.uk | Winter 2024 | Drag ’N Drop | 30

Hardware

RockPro64
USB 2 ports plus, one USB 3 port, one
USB C port, a Pi-compatible 40 pin
GPIO bus and eMMC module support
up to 128GB.

Best of all, it offers expansion pos-
ibilities through its' PCI-e 4×1 slot.

For anyone wanting to build a RAID
storage system, Pine64 offer an
aluminium NAS Case and a PCI-e to
SATA adapter that supports two SATA
drives.

Unusally, the board requires 12 volts
power supply in 3 or 5 amps. The 5
amp supply would be required for
anyone building a RAID setup.

Additionally Pine64 can supply a
PCI-e to m.2 NVMe adapter that can
accommodate NVMe drives ranging
from 2230 to 2280.

Linux
Early in 2023, I purchased a 4GB
board, a Pine64 preminium aluminium
case, power supply and real time clock
battery holder. The RockPro64 board is
fitted upside down in the aluminium
housing, so that the RK3399 chip is in
contact with the heat sink pillar, contact

Figure 1. RockPro64 Single Board Computer (125×80mm)

We start by revisiting “Arc Windows
Without Pain” from the March 1988
edition of Acorn User. This will be
followed next time by “Go with the
Flow” which develops a flow charting
application, it ap-peared in Sep-tember
1988 edition of the mag.

Among the
pages of this issue
of Drag ’N Drop
are digitally re-
mastered versions
of the articles. We
couldn’t possibly
charge you for this
content.

So it’s all free,
even with the
sample edition of
Drag ’N Drop,
although our
tutorial on updating
the code is for full-
edition, paying
readers only.

In this series we’ll be celebrating
software from RISC OS’s precessor,
the Archimedes, fondly called the Arc.

The Arc was the world’s first dek-
stop micro to use an ARM chip, a tiny
thing which now powers millions of
mobile phones and we don’t give it a
second thought.

At the time, the Arc was world beat-
ing and it took years for the world to
catch up − some word argue it hasn't
caught up!

It ain't all nostalgia, however.
There's a serious side to this. We'll be
learning how to update legacy software
to run properly on RISC OS Pi. You
could just try to run this old software in
emulators like ArchiEmu and ADFFS
but that isn’t always satisfactory.

Many excellent applications began
their lives on the Arc, some fortunately
survived to be modernised, others were
left behind so we’ll be carrying out a
sort of rescue operation, mainly with
BBC Basic software but also assembly
code for updating relocatable modules.

www.dragdrop.co.uk | Winter 2024 | Drag ’N Drop | 34

Programming

Noah’s Arc

The Archimedes desktop under emulation - reactions vary

RISC OZ
decimal. Decimal 14 is E in
hexadecimal. In hex, E is (1 x 23) + (1
× 22) + (1 × 21) + (0 × 20) = 8 + 4 +2
+ 0 = 14 because 8 + 4 + 2 + 0 is 1000
+ 100 + 10 + 0 in binary which in turn
is 1110.

Bit 31 (nybble 7) of the icon flag block
flag has hex value E and the icon flag is
now &E0000000

E 0 0 0 0 0 0 0
F = &E0000000.

www.dragdrop.co.uk | Winter 2024 | Drag ’N Drop | 38

Series

Nothing on screen

Listing 1
 REM SetFlagS - RISC OZ

 REM (c) Drag N Drop Winter 2024

 SYS "Wimp_Initialise",200,&4B534154,"He

llo world"

 DIM B 256, T 256, U 512, V 256

 Q=FALSE

 :

 PROCWINDOWS : PROCICONS

 !B=W1

 SYS "Wimp_GetWindowState",,B

 SYS "Wimp_OpenWindow",,B

 REPEAT

 SYS "Wimp_Poll",,B TO E

 IF E=2 SYS "Wimp_OpenWindow",,B

 IF E=3 SYS "Wimp_CloseWindow",,B

 IF E=17 OR E=18 Q=(B!16=0)

 UNTIL Q OR INKEY-113

 SYS "Wimp_CloseDown"

 END

 :

 DEF PROCWINDOWS

 RESTORE +1

 DATA A text icon,200,200,600,300

 DATA X,Y,X+W,Y+H,0,0,-1

 DATA &86001012 : REM window f

lags

 DATA &01000207,&000C0103 : REM window c

olours

 DATA 0,0,W,H

 DATA &00000109,&3000 : REM title ba

r and work flags

 DATA 1,0,T,0,0,0

G’day mates, I hope you had a
fantabulous Chrimbo and are ready for
2024. Firstly, big mobs to the boys over
there at Drag N Drop for doing an ace
job. I only wish I could come to one of
your RISC OS shows. Maybe one day.

The whole continent of Straya
desires to produce a window containing
an icon that displays white coloured
text in an outline font positioned on an
orange background.

The text will be centered within the
icon. To help you on your way, listing 1
starts up with icon flags set within
procedure PROCICONS looks like this.
As we go along, amend the F =
&00000000 line to the value of F given
and re-run the program.

Step 1: Create an icon block with all
bytes containing a zero state:

0 0 0 0 0 0 0 0
F = &00000000 (=&0), nothing on
screen.

Step 2: Orange is colour fourteen in

ARC WINDOWS
WITHOUT PAIN

The Arc's huge potential for using windows, icons, menus

and pointers can be accessed simply from Basic

Chris Adie

then execute a software interrupt (SWI)
instruction, type 6.

Listing 1 produces a simple window

It can be moved and resized

An SWI is an ARM machine code
instruction which causes control to be
transferred directly to the operating
system. What happens then depends on the
type of the SWI. Type 6 is equivalent to
Osbyte, so the operating system performs
the appropriate operation and then returns
to the machine code instruction following
the SWI. The Basic interpreter stores the
value of RO returned by the operating
system in the variable result%, and goes on
to the next statement inthe program.

There are over 16 million possible SWI
types, but only a very few of these are
defined. The Window Manager uses 24
SWI types, starting with type &400C0 but
we'll be dealing with only a few of them.

One problem with SYS is that only the
first eight of the ARM processor’s registers
can be accessed. When you have more than
eight 32-bit words of information to pass
across, you must use a parameter block –
an area of memory pointed to be one
register, usually R1, which contains all the
data for the operating system routine, and
where the routine will store any output
values before returning. So for example
you could have

 DIM black &300

 SYS poll,0,block TO r

eason%

where ’poll’ is one of the Window Manager
SWI types.

A single window
Listing 1 on the yellow pages is a short
program which creates a single window on
a mode 12 screen. It’s important to realise
we are talking about scrollable ’desktop’
windows here, not the usual graphics and
text windows defined with VDU 24 and
VDU 28. When we need to talk about the
VDU 24 graphics window, we'll call it the
’clip rectangle’, since any graphics
performed outside that region don’t appear
on the screen. The example window drawn
by the program contains concentric
coloured rings together with some text, and
it has a title bar, full box, horizontal and
vertical scroll bars and a size box. You can
move the window around the screen, scroll
and re-size it, and when you click on the
close box the program terminates. We'll go
through the program step-by-step so you
can see what all the routines do.

With Arthur version 0.2, not all of the
characters above ASCII 127 are pre-
programmed with the shapes required by
the Window Manager. If you still have
version 0.2 then you'll have to add the

ARCHIMEDES

ACORN USER MARCH 1988 95

One of the most exciting developments
incorporated in the Archimedes micros has
been the ’WIMP’ system – the use of
windows, icons, menus and pointers to
represent a simulated ’desktop’. The Apple
Macintosh has been the major force in
popularising this way of working, and the
MS-DOS world has followed Apple’s lead,
with the GEM and MS Windows
environments. The Archimedes Desktop
program on the Welcome disc shows that
Acorn is also following the trend towards
easier-to-use software.

What you may not have realised is that
the Desktop is written in Basic! All the
window handling, the pop-up menus and
so forth are controlled from Basic, but
actually performed by part of the Arthur
operating system called the Window
Manager. This division of work between
the program and the operating system
means that it is easy to write your own
programs which use win- dows – much
easier than in GEM, MS Windows or on
the Macintosh! This article explains how
your software can take advantage of this
state-of-the-art user interface.

The SYS statement
We'll make a lot of use of the Basic SYS
statement in this article. SYS was
introduced in Basic 5 on the Archimedes as
a way of calling the operating system. Most
of the familiar BBC operating system
routines, Osbyte, Oswrch and so on, can
be called using SYS, although they can also
be called in the old way too. SYS is a more
sophisticated version of CALL.

When Basic finds a statement like

 10 SYS 6,A%,X%,Y% TO

result%

it will copy A% to processor register R0,
X% to register Rl, Y% to register R2, and

D
igitally rem

astered

specially for D
rag'N

 D
rop

PROCdefinewimpcharacters. PROCsys-
vars defines the various Window Manager
SWI types.

Before you can make any Window
Manager calls, you must initialise the
WIMP system with SYS init. This
statement also has the effect of VDU 5, and
all the text output to windows must be
done in graphics mode. After that, there are
two stages in preparing a window for
display on the screen – first you create it,
then you open it.

Creating a window is done with

 SYS createw,0,block T

O handle%

where createw=&400C1. From now on, I’ll
not refer explicitly to the SWI numbers -
you can get them from PROCsysvars in
the listing. The creation routine returns an
integer called the window handle, which
uniquely identifies the window. It is used
in most other Window Manager calls. In
many ways it’s like a familiar file handle.
The parameters block passed to createw
contains quite a lot of information about
the window. It controls features like the
size and colour of the window - all the
parameters are shown in tables 1 and 2.

Physical work area
The physical work area (PWA) of a
window is the part of the window
containing information – it excludes the
scroll bars and title bars. You can specify
the position of the window on the screen
by giving the co-ordinates of the lower left
and upper right corners of the PWA,
relative to the normal graphics origin at the
bottom left-hand corner of the Archimedes
screen as shown in figure 1.

Usually, the physical work area displays
a small part of a larger work area, and the
PWA can be moved around this larger
logical work area (LWA) using the scroll
bars and arrow icons. Figure 2 shows how
the LWA and PWA relate to each other.
We specify the size of the LWA in the
parameter block for createw by giving the
minimum and maximum X and Y values
measured from point called the LWA
origin. This must be in the LWA. In the
Desktop program the LWA origin is at the
top left corner of the LWA. This has the
disadvantage that Y values within the LWA
measured relative to the LWA origin are
negative. So in the yellow pages programs
the LWA origin is at the bottom left corner
of the LWA, at the graphics origin. The
LWA min X and LWA min Y arc both set
to zero.

The positions of the scroll bars control

Table1: Parameter block for createw

Listing 2 gives you three windows

which part of the LWA appears in the
PWA. The scroll bar positions are given by
two numbers which are the co-ordinates of
the top left of the PWA, relative to the
LWA origin – this may explain why the
Desktop program puts the LWA origin
where it does!

Opening a window is easily done by
calling the Window Manager’s openw
routine with the SYS statement:

 SYS openw,0,block

where the parameter block is set up as
shown in table 3. If you don’t know what
values to fill the block with, you can use:

 block! = handlez%

SYS getw,0,block

to set the block up ready for openw. This
opens the window in its last known
position on the screen.

WIMP events
The biggest difference between a program
using windows and a conventional
program is that in the first case, the user is
in charge of what happens next, not the
programmer. You can move, scroll and
resize windows, click the mouse on objects
in the windows, or make keystrokes. The
program must know what to do in all these
circumstances, though it may of course
choose to ignore some of them. The main
loop at the heart of a program using the
Window Manager reflects this situation:

REPEAT

 Wait for the user to

 do something

 Take appropriate action

UNTIL finished

To find out what the user has done, you
use a routine called poll. The only input in
the parameter block to poll is a ’mask’
indicating the actions you don’t want the
user to be able to do – if it is 0, everything
is allowable. On leaving poll, register RO
contains the kind of action which took
place, and the parameter block carries
information specific to that action. These
actions are called ’events’, but they are not
the same as ’events’ on the BBC micro -
those can only be used from machine code.

There are 10 possible values returned by
poll, as shown in table 4. The information
returned in the parameter block for each is
shown in table 5.

Event 0 is easy – the user hasn’t done
anything, and we don’t need to do
anything either, unless you have an
animated display to take care of, like the
clock in the Desktop for instance.

Event 2 (open window request) informs
us that the user has brought a window to
the top of the stack of windows by clicking
on the title bar, or that the window’s size
has changed or scrolled. Usually, a
sufficient response to event 2 is to call
openw with the parameter block passed
back by the poll.

The openw routine by itself does not
result in anything actually being drawn on
the screen. A call to openw will usually
result in all or part of the window and its
borders needing to be redrawn, so openw
generates event 1 (redraw window request)
before it returns control to your program.
You must respond to this event 1 in a very
definite way, using the following code:

ARCHIMEDES

ACORN USER MARCH 1988 96

block!0 to Initial co-ordinate of window's
block!12 physical work area (where first

appears on the screen)
block!0 PWA min X
block!4 PWAmin Y
block!8 PWA max X
block!12 PWA max Y
block!16 Initial X scroll bar offset
block!20 Initial Y scroll bar offset
block!24 Handle of window under which to

create this one (-1 if on top)
block!28 Window flags (see Table 2)
block?32 Window title foreground colour
block?33 Window title background colour
block?34 Work area foreground colour
block?35 Work area background colour
block?36 Scroll bar background colour
block?37 Scroll bar foreground colour
block?38 Title bar highlight colour
block?39 Reserved by Acorn
block!40 to Logical work area co-ordinates
block!52
block!40 LWA minX
block!44 LWA min Y
block!48 LWA max X
block!52 LWA max Y
block!56 Icon flags for title bar
block!69 to Reserved by Acorn
block!68
$(block+72) Title string (up to 11

characters,terminated by CR)
block!84 Number of icons in this window
block!88 onwards Icon data is stored here

 SYS redraww,0,block T

O more%

 WHILE more%

 PROCredrawwindow

 SYS getr,0,block

TO more%

 ENDWHILE

The routine redraww works out a list of
invalid rectangles, which cover the visible
parts of the window which need updating.
It then redraws the title bar and scroll bar
where these intersect with the list, and
finally it indicates to your program
whether part of the PWA needs updating
by returning a flag in register R0. The
parameter block returned by redraww is
shown in table 6. The VDU 24 graphics
clip rectangle is set to the co-ordinates at
block!28 to block!40, and your
PROCredrawwindow routine takes
responsibility for drawing the appropriate
graphic or text in that rectangle. The
process is repeated for all rectangles in the
invalid list, using routine getr to get
position parameters for each in turn, until
the more% flag returned in RO becomes
FALSE. Note that more than one
window’s PWA may need updating, so
PROCredrawwindow needs to pay
attention to the window handle returned in
block!0.

The above sounds an incredibly
complicated procedure for doing
something which is in reality quite easy to
understand. A couple of examples will
probably make things clearer. Diagram 3
shows what happens when a window
which is overlapped by two other windows
is brought to the top, by clicking on the
title bar. First of all, you get event 2 (open
window request) from poll, so we call
openw. We then get event 1 (redraw
window request), and so we call redraww,
which draws the parts of the border which
were hidden by the other windows.
Redraww passes back the co-ordinates of
invalid rectangle A, which you draw in,
and then we call getr. This passes back the
co-ordinates of rectangle B, so we draw in
there too, and call getr again. But this time
getr returns a more% value of FALSE
showing there are no more rectangles. So
you go back to calling poll. Notice that
redraww clears all the rectang- les to the
window background colour, ready for you
to draw on.

Diagram 4 shows what happen when
you scroll a window which is partially
overlapped by another window. The poll
routine returns an open window request
event, and you call openw. Poll then gives
you a redraw window request event.

ARCHIMEDES

ACORN USER MARCH 1988 97

Bit Meaning if bit set
0 Window has a title bar
1 Window can be moved
2 There is a vertical scroll bar
3 There is a horizontal scroll bar
4 The window can be redrawn by

Window Manager (ie, it
contains icons only)

5 The window is a ‘pane’ in
another window

6 The window is allowed to go
outside the screen

7 There are no ‘send-to-back’ or
‘close’ boxes

The following bits are output flags, set by
certain Window Manager routines.

16 The window is open
17 The window is not covered by

another
18 The window has been toggled

to full size

Event code Meaning
0 Nothing has happened
1 A window needs redrawing
2 A window needs (re)opening
3 A window close box has been

clicked on
4 The pointer is leaving a window
5 The pointer is entering a window
6 User has pressed or released a

mouse button
7 User has finished a drag box

operation (after SWI drag)
8 User has pressed a key
9 User has selected a pop-up menu

item

Text can be added with the caret

Table 2: Window flags

block!0 Handle of window
block!4 to Co-ordinates of
block!16 Physical work area

block!4 PWA min X
block!8 PWA min Y
block!12 PWA max X
block!16 PWA max Y

block!20 X scroll bar offset
block!24 Y scroll bar offset
block!28 Handle of window which this

one is behind (-1 if it’s on top)

Table 3: Parameter block for openw and getw

Table 4: User event codes returned by poll

User event 1 2 3 4 5
block! 0 Handle Handle Handle Handle Handle
block! 4 PWaminX
block! 8 PWaminY
block!12 PWamaxX
block!16 PWamaxY
block!20 SerX
block !24 ScrY
block !28 Under

User event 6 7 8 9
block!0 MouseX DrpminX Handle Mainitem
block!4 MouseY DrgminY Icnhandle Subitem
block!8 Newbut DrgmaxX CaretX
block!2 Handle DrgmaxY CaretY
block!16 Icnhandle Key
block!20 Oldbut
blocki24
block !28

Table 5: Parameter block data returned by poll

You call redraww, which draws the scroll
bars in their new position and copies those
parts of the physical work area which will

remain visible to their new location. It
returns the co-ordinates of rectangle A,
which you then draw in and call getr for
the co-ordinates of rectangle B. Having
drawn that in, getre indicates no more
rectangles, so you can go back to calling
poll. You can see that in this case you don’t
need to redraw any part of the house,
because it does not appear in any of the
invalid rectangles.

If you like, try to work out what
happens when you go from the situation in
diagram 3 – in other words when the user
clicks on the ’send to back’ box in window
1. Remember that events tell you which
window they are concerned with, by in-
cluding the handle in the parameter block
information returned by getr.

When the user clicks on the close box of
a window, event 3 (close window request)
is passed back by poll. You call the closew
routine with the appropriate window
handle in block!0. If necessary you will get
open window and redraw window requests
when you go back to calling poll, for
windows revealed from underneath the
closed one.

Text and graphics
PROCredrawwindow and PROCdraw in
listing 1 show how to put text and graphics
in a window. In fact, for this simple
program, the entire LWA is redrawn for
each rectangle that we are passed by
redraww and getr, but since the graphics
clip rectangle is set, only the rectangle in
question is actually updated.

The first thing to do is to find out
where the LWA origin is, relative to the
graphics origin at the bottom-left corner of
the screen. Diagrams 1 and 2 show that you
can calculate this from the PWA co-
ordinates and the scroll offsets. All text and
graphics to be drawn in the window must
be drawn relative to the LWA origin, so
that scrolling will have the correct effect.
The obvious way to do this is to move the
screen graphics origin to the LWA origin
while we do the drawing, and move it back
afterwards, but unfortunately this leads to
problems. In PROCdraw in listing 1, you
must add the LWA origin co-ordinates to
every graphics co-ordinate in the LWA.

Remember that VDU 5 mode is always
in effect, so that text as well as graphics is
limited to the graphics clip rectangle. You
must position the graphics cursor using
MOVE before using PRINT, and you can’t
use Return for a new linc, because that will
move the graphics cursor to the left-hand
edge of the current clip rectangle, not at all
what you want.

ARCHIMEDES

ACORN USER MARCH 1988 98

Physical screen

PWA max X

PWA min X

PWA min Y PWA max Y

Physical Work Area

Diagram 1: Relationship of physical work area to the Archimedes’ screen

Logical work area

Scroll X offset

LWA
max Y

LWA

min X

Scroll Y offset

LWA max X

Logical work area origin

LWA

min Y

Physical Work Area

Diagram 2: How the logical and physical work areas relate

Window 1

Window 2

Window 3 Window 3

Window 2

Window 1

A
B

Diagram 3: On the left, window 1 lies underneath, so when it is brought to the front (right), rectangles A

and B need redrawing

strings. In PROCwritetext, which writes
out the text when a redraw window request
is received, this program actually pays
attention to the rectangle it’s being asked to
redraw, and it only writes out those
charac- ters which appear in that rectangle.
This speeds things up enormously
compared to writing out the entire text
every time.

When a key pressed event is detected by
poll, PROCkeypressed places the character
in the text array, and works out where in
the LWA the character should be
displayed. It calls frerdrw, and then moves
the caret one position along. The frerdrw
(force redraw) routine is called with:

 SYS frcrdrw,handle,x1

,y1,x2,y2

where x1, v1, x2, y2 are the co-ordinates,
relative to the LWA origin, of the rectangle
which needs to be redrawn. The next call to
poll will result in a redraw window request
event if any part of that rectangle is visible
on the sercen.

The other routine for handling the caret
is getcaret. Although it’s not actually used
in listing 3, it can be called with:

SYS getcaret,0,block

On return, the parameter block contains
the information which was passed in the
fast setcaret call, so in theory your program
does not even need to keep track of where
the caret is on the screen!

Icons and menus
We've mentioned both icons and menus in
passing, but haven’t said much about them.
A future article will cover these aspects of
the WIMP environment, but for now you
have got enough information and examples
to program your own scrollable windows.
Experiment with the existing programs by
increasing the number of windows or put-
ting different things in them. Try altering
listing 3 so chat the caret is positioned
wherever you click the mouse. There are all
sorts of possibilities which scrolling
windows make available - consider what
benefits would a really large logical work
area give you, for instance.

Start thinking now about how you
could alter your own programs to take
advantage of scolling windows. Several of
Acorn Us- er’s own listings could be
radically im- proved by a combination of
windows and mouse control.

Over the coming months we'll take a
look at how to write Arc menus and use
the mouse in your programming.
The listings from this article are on the
yellow pages, see page 113. They are also
available on Arc-format discs – see page 13.

ARCHIMEDES

ACORN USER MARCH 1988 99

Window 1

Window 2

Diagram 4: Scrolling a partially obscured window block!0 Handle of window
block!4 to Co-ordinates of physical
block!16 work area

block!4 PWA min X
block!8 PWA min Y
block!12 PWA max X
block!16 PWA max Y

block!20 X scroll bar offset
block!24 Y scroll bar offset
block!28 to Co-ordinates of rectangle
block!40 to draw

block!28 min X
block!32 min Y
block !36 max X
block!40 max Y

Multiple windows
Having typed in listing 1, relatively few
changes are required to get to listing 2. This
displays three windows containing circles,
ellipses and rectangles. You simply have an
array, window%(), to hold the window
handles, and another array, windows$(), to
hold the window titles.
PROCredrawwindow works out the name
of the window to redraw and calls
FNdrawcircles, FNdrawrectangles or
FNdrawellipses appropriately. You can
increase the number of windows (controlled
by ’maxindex’) up to 32, so long as you
prove a suitable drawing routine for each.
The structure of the program is quite
independent of whether you are using two
or 32 windows.

Text entry
The Desktop program has a ’notebook’
window, which you can type into. Typed
characters appear at the position of a text
cursor, shaped rather like an elongated
capital I, This is called a ’caret’, and there
are two special routines in the Window
Manager for dealing with it.

The first of these routines is setcarct. It
doesn’t use a parameter block. Instead, all
the information is passed in registers. The
call to setcaret is typically like this:

 SYS setcaret,handle,

-�1,X,Y,&1000024,-1

where X and Y give the required position of
the caret relative to the window’s LWA
origin. The three parameters which are
given explicit numeric values have to do
with the size of the caret and whether it is
associated with a particular icon.

A call to setcaret results in the window
title bar changing colour, to that specified in
block?38 in the original call to createw, and
the caret being drawn in the indicated
position (providing that the position is
within the visible PWA).

Table 6: Block from redraww, getr and updatew

JARGON BOX

The window now has the ’input focus’ –
in other words a key pressed event (poll
event 8) will pass back the handle of this
window and the carct position in the
parameter block, A setcaret call to another
window will erase the caret from the
window with the current input focus and
reset the title bar back to normal before
putting the caret in the newly selected
window.

Listing 3 is a program which displays
three windows. You can click the move ina
window work area and type in your own
text, rather like the Desktop notebook. [f
you've already typed in listing 2, the
changes you'll need to make are minor.
The text for all the windows is stored as a
two-dimensional array of 80-character

Window - A discrete area of the screen
used to display information. There may be
several on the screen at once.
Icon – Small picture on the screen which
causes some action when the mouse but-
ton is clicked on it.
Close Box - Clicking on this icon re-
moves a window from the sereen.
Full Box – An icon which enlarges the
window to full screen size.
Scroll Bar – Device on the side of the
window to let you change the view
through the window.

YELLOW PAGES

A R C H I M E D E S

ACORN USER MARCH 1988 124

 710 ENDPROC

 720 :

 730 DEF PROCclosewindow(handle%)

 740 block!0=handle%

 750 SYS closew,0,block

 760 ENDPROC

 770 :

 780 DEF PROClwaorigin(b,RETURN x%,RETU

RN y%)

 790 x%=b!0-b!16

 800 y%=b!12-b!20

 810 ENDPROC

 820 :

 830 DEF PROCdraw(x0%,y0%)

 840 LOCAL i%

 850 FOR i%=300 TO 50 STEP -50

 860 GCOL FNgcol(i% DIV 50)

 870 CIRCLE FILL x0%+640,y0%+512,i%

 880 NEXT

 890 GCOL black

 900 MOVE x0%+100,y0%+932

 910 PRINT "This is a sample window, sh

owing the scrolling features of the"

 920 MOVE x0%+100,y0%+900

 930 PRINT "Window Manager module in th

e Acorn Archimedes microcomputer."

 940 MOVE x0%+100,y0%+100

 950 PRINT "This is in Black. ";

 960 GCOL green:PRINT "This is in green

. ";

 970 GCOL blue:PRINT "This is in blue.

";

 980 GCOL red:PRINT "This is in red.";

 990 MOVE x0%+100,y0%+132

 1000 GCOL cyan:PRINT "This is in cyan.

";

 1010 GCOL magenta:PRINT "This is in mag

enta. ";

 1020 GCOL midgrey:PRINT "This is in mid

-grey. ";

 1030 ENDPROC

 1040 :

 1050 DEF PROCcolours

 1060 black=0

 1070 red=1

 1080 green=2

 1090 yellow=3

 1100 blue=4

 1110 magenta=5

 1120 cyan=6

 1130 white=7

 1140 midgrey=15

 1150 scrollbarfgcol=14

 1160 scrollbarbgcol=13

 1170 highlightbgcol=red

 1180 titlefgcol=12

 1190 titlebgcol=scrollbarfgcol

 1200 VDU 19,0,24,128,128,128

 1210 VDU 19,15,16,128,128,128

 1220 VDU 19,14,16,15*16,11*16,6*16

 1230 VDU 19,13,16,0*16,12*16,15*16

 1240 VDU 19,12,16,0*16,0*16,8*16

 1250 VDU 19,11,16|

 1260 VDU 19,10,16|

 1270 VDU 19,9,16|

 1280 VDU 19,8,16|

 1290 ENDPROC

 1300 :

 1310 DEF PROCsysvars

 1320 wimp=&400C0

 1330 init=wimp+0

 1340 createw=wimp+1

 1350 createi=wimp+2

Listing 1. Single window demo

 10 REM Windows Demo 1

 20 REM by Chris Adie

 30 REM for Arc only

 40 REM (C) Acorn User March 1988

 50 :

 60 MODE 12

 70 ON ERROR PROCerror

 80 *FX 4,1

 90 *FX 200,1

 100 PROCsysvars

 110 PROCcolours

 120 PROCdefinewimpcharacters

 130 DIM block &300

 140 SYS init

 150 SYS frcrdrw,-1,0,0,1279,1023

 160 *POINTER

 170 window%=FNcreatewindow("Target",&0

F,wblack,wwhite,1279,1023,10,10,400,400)

 180 PROCopenwindow(window%,FALSE)

 190 finished%=FALSE

 200 :

 210 REPEAT

 220 event%=FNpoll(0)

 230 PROCaction(event%,finished%)

 240 UNTIL finished%

 250 :

 260 *FX 4,0

 270 *FX 200,0

 280 MODE 12

 290 END

 300 :

 310 DEF FNpoll(mask%)

 320 LOCAL a%

 330 block!0=mask%

 340 SYS poll,0,block TO a%

 350 =a%

 360 :

 370 DEF PROCaction(evnt%,RETURN end%)

 380 CASE evnt% OF

 390 WHEN 0 :

 400 WHEN 1 :

 410 PROCredrawwindow(block!0)

 420 WHEN 2 :

 430 PROCopenwindow(block!0,TRUE)

 440 WHEN 3 :

 450 PROCclosewindow(block!0)

 460 end%=TRUE

 470 WHEN 4 :

 480 WHEN 5 :

 490 WHEN 6 :

 500 WHEN 7 :

 510 WHEN 8 :

 520 WHEN 9 :

 530 ENDCASE

 540 ENDPROC

 550 :

 560 DEF PROCopenwindow(handle%,full%)

 570 block!0=handle%

 580 IF NOT full% THEN SYS getw,0,block

 590 SYS openw,0,block

 600 ENDPROC

 610 :

 620 DEF PROCredrawwindow(handle%)

 630 LOCAL more%,x0%,y0%

 640 block!0=handle%

 650 SYS redraww,0,block TO more%

 660 PROClwaorigin(block+4,x0%,y0%)

 670 WHILE more%

 680 PROCdraw(x0%,y0%)

 690 SYS getr,0,block TO more%

 700 ENDWHILE

YELLOW PAGES

A R C H I M E D E S

ACORN USER MARCH 1988 125

,126,0

 1980 VDU 23,136,24,40,79,129,79,40,24,0

 1990 VDU 23,137,24,20,242,129,242,20,24

,0

 2000 VDU 23,138,60,36,36,231,66,36,24,0

 2010 VDU 23,139,24,36,66,231,36,36,60,0

 2020 VDU 23,140,48,24,60,6,62,102,62,0

 2030 VDU 23,141,48,24,60,102,126,96,60,

0

 2040 VDU 23,142,102,0,60,102,126,96,60,

0

 2050 VDU 23,143,60,102,60,102,126,96,60

,0

 2060 ENDPROC

 2070 :

 2080 DEF PROCerror

 2090 MODE 12

 2100 *FX 4,0

 2110 *FX 200,0

 2120 $block="Error":SYS "Wimp_CommandWi

ndow",block

 2130 REPORT:PRINT " at line ";ERL

 2140 END

Listing 2. Multiple window demo

Listings 2 and 3 also require PROCcolours, PROCsysvars,
FNcreatewindow, PROCdefinewimpcharacters and PROCerror
from listing 1. Add these procedures onto the end of the listing

 10 REM Windows Demo 2

 20 REM by Chris Adie

 30 REM for Arc only

 40 REM (C) Acorn User March 1988

 50 :

 60 MODE 12

 70 ON ERROR PROCerror

 80 REM*FX 4,1

 90 REM*FX 200,1

 100 PROCsysvars

 110 PROCcolours

 120 REMPROCdefinewimpcharacters

 130 DIM block &300

 140 SYS init

 150 SYS frcrdrw,-1,0,0,1279,1023

 160 *POINTER

 170 maxindex=3

 180 DIM window%(maxindex)

 190 DIM window$(maxindex)

 200 DATA "Circles","Ellipses","Rectang

les"

 210 FOR i%=1 TO maxindex

 220 READ window$(i%)

 230 window%(i%)=FNcreatewindow(window$

(i%),&0F,wblack,wwhite,1279,1023,100*i%,

150+100*i%,400+100*i%,650+100*i%)

 240 PROCopenwindow(window%(i%),FALSE)

 250 NEXT i%

 260 :

 270 REPEAT

 280 PROCaction(FNpoll(0))

 290 UNTIL FNfinished

 300 :

 310 *FX 4,0

 320 *FX 200,0

 330 MODE 12

 340 END

 350 :

 360 DEF FNpoll(mask%)

 370 LOCAL a%

 380 block!0=mask%

 1360 deletew=wimp+3

 1370 deletei=wimp+4

 1380 openw=wimp+5

 1390 closew=wimp+6

 1400 poll=wimp+7

 1410 redraww=wimp+8

 1420 updatew=wimp+9

 1430 getr=wimp+10

 1440 getw=wimp+11

 1450 getwi=wimp+12

 1460 seti=wimp+13

 1470 geti=wimp+14

 1480 getp=wimp+15

 1490 drag=wimp+16

 1500 frcrdrw=wimp+17

 1510 setcaret=wimp+18

 1520 getcaret=wimp+19

 1530 createm=wimp+20

 1540 decodem=wimp+21

 1550 whichi=wimp+22

 1560 setextent=wimp+23

 1570 ENDPROC

 1580 :

 1590 DEF FNcreatewindow(title$,flags%,f

gcol%,bgcol%,maxx%,maxy%,wal%,wab%,war%,

wat%)

 1600 LOCAL handle%

 1610 block!0=wal%

 1620 block!4=wab%

 1630 block!8=war%

 1640 block!12=wat%

 1650 block!16=0

 1660 block!20=maxy%

 1670 block!24=-1

 1680 block!28=flags%

 1690 block?32=titlefgcol

 1700 block?33=titlebgcol

 1710 block?34=fgcol%

 1720 block?35=bgcol%

 1730 block?36=scrollbarbgcol

 1740 block?37=scrollbarfgcol

 1750 block?38=highlightbgcol

 1760 block?39=0

 1770 block!40=0

 1780 block!44=0

 1790 block!48=maxx%

 1800 block!52=maxy%

 1810 block!56=&2D

 1820 block!60=&3000 :block!64=0:block!6

8=0

 1830 $(block+72)=LEFT$(title$,11)

 1840 block!84=0

 1850 SYS createw,0,block TO handle%

 1860 =handle%

 1870 :

 1880 DEF PROCdefinewimpcharacters

 1890 REM lines 1900-2050 are not needed

 with Arthur > 0.2

 1900 VDU 23,128,102,0,60,102,126,102,10

2,0

 1910 VDU 23,129,240,144,240,31,31,31,31

,0

 1920 VDU 23,130,224,224,224,31,17,17,31

,0

 1930 VDU 23,131,254,146,146,242,130,130

,254,0

 1940 VDU 23,132,102,153,129,66,129,153,

102,0

 1950 VDU 23,133,252,252,255,225,225,33,

63,0

 1960 VDU 23,134,102,0,102,102,102,102,6

0,0

 1970 VDU 23,135,126,195,157,177,157,195

YELLOW PAGES

A R C H I M E D E S

ACORN USER MARCH 1988 126

 1060 MOVE x0%+100,y0%+132

 1070 GCOL cyan:PRINT "This is in cyan.

";

 1080 GCOL magenta:PRINT "This is in mag

enta. ";

 1090 GCOL midgrey:PRINT "This is in mid

-grey. ";

 1100 =0

 1110 :

 1120 DEF FNdrawEllipses(x0%,y0%)

 1130 LOCAL i%,j%

 1140 FOR i%=1 TO 6

 1150 GCOL FNgcol(i%) :REM GCOL i%

 1160 ELLIPSE FILL x0%+640,y0%+512,80*i%

,80*(7-i%)

 1170 NEXT i%

 1180 GCOL black

 1190 MOVE x0%+100,y0%+932

 1200 PRINT "This is a sample window con

taining a stack of overlapping";

 1210 MOVE x0%+100,y0%+900

 1220 PRINT "ellipses. The window is cal

led 'Ellipses'"

 1230 GCOL magenta

 1240 MOVE x0%+100,y0%+132

 1250 PRINT "Try changing routine 'FNdra

wEllipses' to do something different."

 1260 =0

 1270 :

 1280 DEF FNdrawRectangles(x0%,y0%)

 1290 LOCAL i%,j%

 1300 FOR i%=1 TO 6

 1310 GCOL FNgcol(i%)

 1320 RECTANGLE FILL x0%+200+i%*60,y0%+5

12-i%*60,120*(7-i%),120*i%

 1330 NEXT i%

 1340 GCOL black

 1350 MOVE x0%+100,y0%+900

 1360 PRINT "Sample window containing a

stack of overlapping rectangles."

 1370 GCOL midgrey

 1380 MOVE x0%+100,y0%+100

 1390 PRINT "The name of this window is

'Rectangles'."

 1400 =0

 1410 :

 1420 DEF FNfinished

 1430 LOCAL finished,i%

 1440 finished=TRUE

 1450 FOR i%=1 TO maxindex

 1460 IF window%(i%)<>-1 THEN finished=F

ALSE

 1470 NEXT i%

 1480 =finished

 1490 :

 1500 DEF FNwhichwindow(handle%)

 1510 LOCAL i%,this%

 1520 i%=1:this%=-1

 1530 FOR i%=1 TO maxindex

 1540 IF window%(i%)=handle% THEN this%=

i%

 1550 NEXT

 1560 =this%

Listing 3. Notepad window demo

 10 REM Windows Demo 3

 20 REM by Chris Adie

 30 REM for Arc only

 40 REM (C) Acorn User March 1988

 50 :

 60 MODE 12

 390 SYS poll,0,block TO a%

 400 =a%

 410 :

 420 DEF PROCaction(evnt%)

 430 CASE evnt% OF

 440 WHEN 0 :

 450 WHEN 1 :

 460 PROCredrawwindow(block!0)

 470 WHEN 2 :

 480 PROCopenwindow(block!0,TRUE)

 490 WHEN 3 :

 500 PROCclosewindow(block!0)

 510 window%(FNwhichwindow(block!0))=-1

 520 WHEN 4 :

 530 WHEN 5 :

 540 WHEN 6 :

 550 WHEN 7 :

 560 WHEN 8 :

 570 WHEN 9 :

 580 ENDCASE

 590 ENDPROC

 600 :

 610 DEF PROCopenwindow(handle%,full%)

 620 block!0=handle%

 630 IF NOT full% THEN SYS getw,0,block

 640 SYS openw,0,block

 650 ENDPROC

 660 :

 670 DEF PROCredrawwindow(handle%)

 680 LOCAL more%,x0%,y0%,i%,name$,junk

 690 i%=FNwhichwindow(handle%)

 700 name$=window$(i%)

 710 block!0=handle%

 720 SYS redraww,0,block TO more%

 730 PROClwaorigin(block+4,x0%,y0%)

 740 WHILE more%

 750 junk=EVAL("FNdraw"+name$+"(x0%,y0%

)")

 760 SYS getr,0,block TO more%

 770 ENDWHILE

 780 ENDPROC

 790 :

 800 DEF PROCclosewindow(handle%)

 810 block!0=handle%

 820 SYS closew,0,block

 830 ENDPROC

 840 :

 850 DEF PROClwaorigin(b,RETURN x%,RETU

RN y%)

 860 x%=b!0-b!16

 870 y%=b!12-b!20

 880 ENDPROC

 890 :

 900 DEF FNdrawCircles(x0%,y0%)

 910 LOCAL i%,j%

 920 FOR i%=300 TO 50 STEP -50

 930 GCOL FNgcol(i% DIV50)

 940 CIRCLE FILL x0%+640,y0%+512,i%

 950 NEXT

 960 GCOL black

 970 MOVE x0%+100,y0%+932

 980 PRINT "This is a sample window, sh

owing the scrolling features of the"

 990 MOVE x0%+100,y0%+900

 1000 PRINT "Window Manager module in th

e Acorn Archimedes microcomputer."

 1010 MOVE x0%+100,y0%+100

 1020 PRINT "This is in Black. ";

 1030 GCOL green:PRINT "This is in green

. ";

 1040 GCOL blue:PRINT "This is in blue.

";

 1050 GCOL red:PRINT "This is in red.";

YELLOW PAGES

A R C H I M E D E S

ACORN USER MARCH 1988 127

 770 SYS openw,0,block

 780 ENDPROC

 790 :

 800 DEF PROCredrawwindow(handle%)

 810 LOCAL more%,x0%,y0%,i%

 820 i%=FNwhichwindow(handle%)

 830 block!0=handle%

 840 SYS redraww,0,block TO more%

 850 PROClwaorigin(block+4,x0%,y0%)

 860 WHILE more%

 870 PROCwritetext(x0%,y0%,i%)

 880 SYS getr,0,block TO more%

 890 ENDWHILE

 900 ENDPROC

 910 :

 920 DEF PROCclosewindow(handle%)

 930 block!0=handle%

 940 SYS closew,0,block

 950 ENDPROC

 960 :

 970 DEF PROClwaorigin(b,RETURN x%,RETU

RN y%)

 980 x%=b!0-b!16

 990 y%=b!12-b!20

 1000 ENDPROC

 1010 :

 1020 DEF PROCbuttonchange

 1030 LOCAL i%

 1040 i%=FNwhichwindow(block!12)

 1050 IF ((block!8 AND %100)<>0) AND (bl

ock!12<>-1) THEN PROCcursor(i%,xpos%(i%)

,ypos%(i%))

 1060 ENDPROC

 1070 :

 1080 DEF PROCkeypressed

 1090 LOCAL i%,col%,row%,x1%,y1%,x2%,y2%

 1100 i%=FNwhichwindow(block!0)

 1110 col%=xpos%(i%)

 1120 row%=ypos%(i%)

 1130 CASE block!24 OF

 1140 WHEN 13:

 1150 row%+=1

 1160 col%=1

 1170 WHEN 7,&18C:

 1180 col%-=1

 1190 WHEN &18D:

 1200 col%+=1

 1210 WHEN &18F:

 1220 row%-=1

 1230 WHEN &18E:

 1240 row%+=1

 1250 OTHERWISE:

 1260 block!24=block!24 AND &7F

 1270 MID$(text$(i%,row%),col%,1)=CHR$(b

lock!24)

 1280 x1%=4+chx%*(col%-1)

 1290 y1%=1024-12-chy%*row%

 1300 x2%=x1%+chx%

 1310 y2%=y1%+chy%

 1320 SYS frcrdrw,block!0,x1%,y1%,x2%,y2

%

 1330 col%+=1

 1340 ENDCASE

 1350 IF col%>80 THEN col%=1:row%+=1

 1360 IF col%<1 THEN col%=80:row%-=1

 1370 IF (row%>25)OR(row%<1) THEN ENDPRO

C

 1380 PROCcursor(i%,col%,row%)

 1390 xpos%(i%)=col%

 1400 ypos%(i%)=row%

 1410 ENDPROC

 1420 :

 1430 DEF PROCwritetext(x0%,y0%,index%)

 70 ON ERROR PROCerror

 80 *FX 4,1

 90 *FX 200,1

 100 PROCsysvars

 110 PROCcolours

 120 PROCdefinewimpcharacters

 130 DIM block &300

 140 SYS init

 150 REMSYS frcrdrw,-1,0,0,1279,1023

 160 REM*POINTER

 170 maxindex=3

 180 DIM window%(maxindex)

 190 DIM window$(maxindex)

 200 DIM text$(maxindex,25)

 210 DIM xpos%(maxindex)

 220 DIM ypos%(maxindex)

 230 chx%=16

 240 chy%=40

 250 :

 260 DATA "Window 1","Window 2","Window

 3"

 270 FOR i%=1 TO maxindex

 280 READ window$(i%)

 290 FOR j%=1 TO 25

 300 text$(i%,j%)=STRING$(80," ")

 310 NEXT j%

 320 xpos%(i%)=1

 330 ypos%(i%)=1

 340 window%(i%)=FNcreatewindow(window$

(i%),&0F,wblack,wwhite,1279,1023,100*i%,

150+100*i%,400+100*i%,650+100*i%)

 350 PROCopenwindow(window%(i%),FALSE)

 360 NEXT i%

 370 :

 380 REPEAT

 390 PROCaction(FNpoll(0))

 400 UNTIL FNfinished

 410 :

 420 *FX 4,0

 430 *FX 200,0

 440 MODE 12

 450 END

 460 :

 470 DEF FNpoll(mask%)

 480 LOCAL a%

 490 block!0=mask%

 500 SYS poll,0,block TO a%

 510 =a%

 520 :

 530 DEF PROCaction(evnt%)

 540 CASE evnt% OF

 550 WHEN 0 :

 560 WHEN 1 :

 570 PROCredrawwindow(block!0)

 580 WHEN 2 :

 590 PROCopenwindow(block!0,TRUE)

 600 WHEN 3 :

 610 PROCclosewindow(block!0)

 620 window%(FNwhichwindow(block!0))=-1

 630 WHEN 4 :

 640 WHEN 5 :

 650 WHEN 6 :

 660 PROCbuttonchange

 670 WHEN 7 :

 680 WHEN 8 :

 690 PROCkeypressed

 700 WHEN 9 :

 710 ENDCASE

 720 ENDPROC

 730 :

 740 DEF PROCopenwindow(handle%,full%)

 750 block!0=handle%

 760 IF NOT full% THEN SYS getw,0,block

YELLOW PAGES

A R C H I M E D E S

ACORN USER MARCH 1988 128

 1440 LOCAL i%,a%,b%,c%,d%,x1%,y1%,x2%,y

2%

 1450 PROClwacliprectangle(block+4,x1%,y

1%,x2%,y2%)

 1460 a%=(1024-12-y2%) DIV chy%+1

 1470 b%=(1024-12-y1%) DIV chy%+2

 1480 c%=(x1%-4) DIV chx%+1

 1490 d%=(x2%-4) DIV chx%+2

 1500 d%=d%=c%

 1510 PROClimit(1,a%,25)

 1520 PROClimit(1,b%,25)

 1530 PROClimit(1,c%,80)

 1540 PROClimit(1,d%,80)

 1550 FOR i%=a% TO b%

 1560 MOVE x0%+4+chx%*(c%-1),y0%+1024-20

-chy%*(i%-1)

 1570 PRINT MID$(text$(index%,i%),c%,d%)

;

 1580 NEXT i%

 1590 ENDPROC

 1600 :

 1610 DEF PROClwacliprectangle(b,RETURN

x1%,RETURN y1%,RETURN x2%,RETURN y2%)

 1620 LOCAL x0%,y0%

 1630 PROClwaorigin(b,x0%,y0%)

 1640 x1%=b!24-x0%:y1%=b!28-y0%

 1650 x2%=b!32-x0%:y2%=b!36-y0%

 1660 ENDPROC

 1670 :

 1680 DEF PROCcursor(i%,col%,row%)

 1690 LOCAL x%,y%

 1700 x%=4+chx%*(col%-1)

 1710 y%=1024-48-chy%*(row%-1)

 1720 SYS setcaret,window%(i%),-1,x%,y%,

&1000000 OR 36,-1

 1730 ENDPROC

 1740 :

 1750 DEF PROClimit(lower,RETURN value,u

pper)

 1760 IF value<lower THEN value=lower

 1770 IF value>upper THEN value=upper

 1780 ENDPROC

 1790 :

 1800 DEF FNfinished

 1810 LOCAL finished,i%

 1820 finished=TRUE

 1830 FOR i%=1 TO maxindex

 1840 IF window%(i%)<>-1 THEN finished=F

ALSE

 1850 NEXT i%

 1860 =finished

 1870 :

 1880 DEF FNwhichwindow(handle%)

 1890 LOCAL i%,this%

 1900 i%=1:this%=-1

 1910 FOR i%=1 TO maxindex

 1920 IF window%(i%)=handle% THEN this%=

i%

 1930 NEXT

 1940 =this%

Amendments required to make programs run on 32-bit RISC
OS 5 (Raspberry Pi)

See the article in the Winter 2024 edition of Drag ’N Drop.

