
17,000+ Digitally Remastered BBC
and Electron Pages.

Advertisement

The 55 BBC Micro Books CD-Rom
was released in 2013 to critical
acclaim.

It’s continued to be one of our
best selling products.

That’s why we thought we’d
make an improvement by enlarging
the collection to 80 books.

That’s over 17,000 pages of high
quality viewing (and printing) in
popular formats for most computing
platforms. All on one CD-Rom*.

Owners of MS Windows and
Macintosh machines can access
the books in Adobe PDF and
HTML format. As can RISC OS

users who also will benefit from the
original, Impression and
EasiWriter files.

Plus over 3,000 typed-in and
debugged listings, ready to run.

Many of these programs will
work on modern RISC OS
computers like the Raspberry Pi.

* Available on USB flash drive for £2.00 supplement.
** Prices correct at April 2021. Upgrade from the ‘55
Books’ is £14.00 (i.e. same price)

To order visit www.dragdrop.co.uk (Paypal) or email
sales@dragdrop.co.uk for details of internet bank
payments. E&OE

That’s because they’re written in
BBC Basic which has come built in
to every Acorn or RISC machine
since the BBC Model A.

Programs will also run much
faster on RISC OS, for example 3D
graphics routines produce
instantaneous results.

DFS disc images of the programs
are supplied for BBC emulators or
for writing to physical media for
use with ‘real’ machines.

What we haven’t enlarged is the
price. It’s still just £14.00** on
CD-Rom*.

Whether you are a student
learning to code, a professional or
hobbyist user or just a collector,
don’t miss out on this astounding
compilation of 80 BBC and
Electron books.

100 Programs for the BBC
100 Programs for the BBC 100 Programs

for the Acorn Electron
21 Games for the BBC
21 Games for the Electron
35 Educational Programs for the BBC

Micro
36 Challenging Games for the BBC

Micro
40 Educational Games for the BBC

Micro
*40 Educational Games for the Electron
60 Programs for the BBC Micro
*60 Programs for the Electron
Advanced Basic Rom User Guide
Advanced Graphics on the BBC Model B
*Advanced Graphics on the Acorn

Electron
Advanced Machine Code Techiques
Advanced Programming for the BBC

Micro
Advanced Programming Techniques for

the BBC Micro
Advanced Programming Techniques for

the Electron
Advanced User Guide for the Electron
*Adventure Games for the BBC Micro
*Applied Assembly Language on the

BBC Microcomputer
The Basic ROM User Guide
The BBC Micro Book

BBC Micro Graphics and Sound
BBC Micro Expert Guide
*BBC Micro and Electron Book
*The BBC Micro Gamesmaster
*The BBC Micro Rom Book
*BBC Micro Wargaming
*BBC Programs Volume 1
The BBC Micro Revealed
Best of PCW Software
*Biology Programs for the BBC

Computer
Brainteasers for the BBC and Electron
*Building Blocks for BBC Games
*Cracking the Code on the BBC Micro
Creating Adventure Programs on the

BBC Micro
Creative Animation and Graphics on the

BBC Micro
Creative Assembler How To Write

Arcade Games for the BBC and
Electron

Creative Graphics on the BBC Micro B
*Discovering BBC Micro Machine Code
*Drawing Your Own BBC Programs
*Educational Games for the BBC Micro
*The Electron Book
*Electron Programs
*Electron Graphics and Sound
Essential Maths on the BBC and

Electron
Games and Other Programs for the

Electron
Games BBC Computers Play
The Electron Gamesmaster
Giant Book of Arcade Games
Graphic Art for the BBC Computer
Graphics on the BBC Microcomputer
Graphics Programming on the BBC
Graphito
Graphs and Charts on the BBC

Microcomputer
Handbook of Procedures & Functions
How to Write Adventure Games on the

BBC and Electron
Instant Arcade Games for the BBC Micro
*Instant Arcade Games for the Electron
*Invaluable Utilities for the BBC Micro
Invaluable Utilities for the Electron
The BBC Micro Machine Code Portfolio
Making Music on the BBC Micro
Mastering Assembly Code
*Mastering Interpreters and Compilers
Microguide for the BBC
More Virgin Games for your BBC
BBC Micro Music Masterclass
PCW Games Collection for the BBC
Practical Programs for the Electron
*Procedures and Functions in BBC

Basic
BBC Micro Programs in Basic
Quality Programs for the BBC
*Quality Programs for the Electron

37 CHANGING VECTORS

The signalmen at Victoria station in London can arrange for a train
arriving on any track to arrive at any platform. Railways invariably
have an up line and a down line; one deals with input, the other
with output. This is the idea of vectoring. In mathematics a vector
is a quantity that can have both magnitude and direction. In
computing, a vector is a location containing an address in the
operating system which can be changed so trapping any program
which is using it. Figure 37.1 shows the concept.

The system vectors are stored in RAM between &200 and &236
hex. To continue the analogy with railways, this block of memory is
like a signal box. You can experiment by pulling one of the levers,
but if you do not know what you are doing you could easily send the
Orient Express into a siding, or worse.

The system vectors are as complicated as a signal box; you can
crash the computer by altering them. If this occurs, you may be
forced to switch the machine off, thus losing any program or data
you happen to have in memory. As a general recommendation, do
not do anything which might interfere with the normal operation of
the machine; the interrupt vectors in particular should be left alone
by the novice.

You can begin experimenting by changing the input and output
vectors. Suppose you want to change all characters typed at the
keyboard to lower case; you could do it by trapping the input vector,
RDCHV.

Here is what you do to change vectors. First, put the operating
system vectors and the addresses pointed to by the vectors into
variables like this:

REM Input vectors: ------------
REM
RDCHV%=&210:REM address of Read Character Vector
RDCHVL%=?RDCHV%:REM store low byte
RDCHVH%=RDCHV%?1:REM and high bytes

REM store address pointed to by Read Character Vector:
OSRDCH%=RDCHVL%+256*RDCHVH%

REM
REM Output vectors: -----------
REM
WRCHV%=&20E:REM Address of Write Character Vector
WRCHVL%=?WRCHV%:REM store low byte
WRCHVH%=WRCHV%?1:REM and high byte
REM store address pointed to by WRCHV:

184

OSWRCH%=WRCHVL%+256*WRCHVH%
REM

Program 37.1 VECEX. Changing vectors

Your program
(in BASIC or machine code)

Input channel Output channel

System vectors or 'links'

Printer

Disk drive

Keyboard
Video

Second
processors,
etc.

Figure 37.1 Machine operating system vectors

Machine operating system

185

AN EXPERIMENT BOARD 213

memory location, in this case &FE60. Also associated with it

is location &FE62 which controls if the port is input or

output. Each bit position in &FE62 corresponds to a bit

position in the user port and if a bit in &FE62 is a 1 then

the corresponding bit in the user port is an output but if it

is a 0 then the bit is an input. Thus to set all the bits of

the port as inputs the instructions: LDA £0: STA &FE62 and to

set it to all outputs: LDA #&FF: STA &FE62. If the programs

have to work using a second processor these are written LDA #&

97: LDX #&62: LDY #0: JSR OSBYTE for an input port and LDA #&

97: LDX #&62: LDY #&FF: JSR OSBYTE for an output port.

Reading the port consists of reading the memory &FE60 for

example LDA &FE60. This will not work if run on a second

processor, however, and under these circumstances then the

OSBYTE subroutine with A set to &96 and X set to &60 must be

used, the value being returned in the Y register. Thus reading

the port becomes: LDA #&96: LDX #&60: JSR OSBYTE.

Similarly to write to the port using a second processor we

have LDA #&97: LDX #&60: JSR OSBYTE which will write the byte

contained in the Y register.

AN EXPERIMENT BOARD

In order to make any significant progress in understanding

digital interfacing using the computer some hardware is

necessary. Figure 10.1 gives the circuit diagram of a simple

electronic experiment board, developed at the University of

Salford, and this may be constructed by readers with a little

electronics experience. It contains three types of output

device connected to the printer port: light emitting diodes so

that a visual display of all 8 bits is obtained, a power

transistor on bit 0 so that higher power devices such as

relays and motors may be driven and also a DIGITAL TO analog

converter so that a voltage output of the digital number is

obtained. It also contains 8 switches connected to the user

port so that digital input to the computer can be obtained.

214
10 Interfacing and Interrupts

Printer port connector

(26-way)

D1—ÛD8 LED

Also connect pin14 of 7400
pin 7 of 7400

to +5V

to 0V

+5V
R9
390

C2
0.1

C1
1 F

Analog output

IC1
ZN426-E8

IC2 7400

IC3 7400

SK
resistor
pack

8x270

D8

D7

D6

D5

R8

R7

R6

R5

+5V

D4

D3

D2

D1

R4

R3

R2

R1

+5V
link

R11 +12V
REDD9

IN4000

YELLOW

GREEN

220
TR1

TR2
R10
3k3 R12

1k
C3
22 F 25V

0V

TIP 29

VR in

VR out

AN
o/p

5

6

7

7

CCV F

1

2

3

4

5
6

8
9

10

11
12

13

1

2
3

4

5
6

8
9

10

11
12

13

ZTX300

2

4

6

8

10

12

14

16

18

20

22

24

26

STROBE

TANT

D7

D6

D5

D4

D3

D2

D1

D0

1

3

5

7

9

11

13

15

17

19

21

23

25

9

10

11

12

13

1

2

3

D0

D1
D2
D3
D4

D5
D6
D7

Figure 10.1a

 7140 PRINT TAB(1);"fall in the river."'
 7150 PRINT TAB(3);"Press any key"
 7155 PRINT TAB(4);" to start"
 7160 IF INKEY$(0)="" THEN GOTO 7160
 7170 ENDPROC

PROCinit

PROCinit starts off in the usual way by defining the graphics characters
and colours used but in this case it is also responsible for printing the
coloured strips that represent the road and the river.

 1000 DEF PROCinit
 1010 VDU 23,224,&3C,&7E,&7E,&7E,&7E,&FF,&FF,&FF
 1020 VDU 23,225,&7E,&7E,&7E,&7E,&7E,&7E,&7E,&7E
 1030 VDU 23,226,&7E,&7E,&FF,&FF,&FF,&7E,&7E,&7E
 1040 VDU 23,227,&B9,&52,&1C,&1E,&1C,&52,&B9,&00
 1050 VDU 23,228,&FF,&FF,&FF,&FF,&FF,&FF,&FF,&FF
 1060 VDU 19,0,0,0,0,0,0:REM 0=BLACK
 1070 VDU 19,1,1,0,0,0,0:REM 1=RED
 1080 VDU 19,2,6,0,0,0,0:REM 2=CYAN
 1090 VDU 19,3,2,0,0,0,0:REM 3=GREEN
 1100 A%=32
 1110 B%=32
 1120 C%=32
 1130 D%=32
 1140 VDU 23,1,0;0;0;0;
 1160 X%=2
 1170 Y%=15
 1175 VDU 26:CLS
 1180 FOR I=0 TO 31
 1190 COLOUR 128+1
 1200 PRINT TAB(3,I);SPC(5);
 1210 COLOUR 128+2
 1220 PRINT TAB(11,I);SPC(5);
 1230 NEXT I
 1240 GAME_END=FALSE
 1250 MAX=1000
 1260 ENDPROC

Lines 1010 to 1050 define the cars, logs and frog. CHR$(224) is a car
or lorry front, CHR$(225) is a lorry middle section and CHR$(226) is a
car or lorry end. You can see the way that these three characters go
together in Fig. 4.2. CHR$(227) is the frog and CHR$(228) is simply a
solid block used to make up logs (see Fig. 4.2). The colours selected by

64 The BBC Micro Gamesmaster

lines 1060 to 1090 are black for the background, red for the road and
for the logs, blue for the river and the traffic and green for the frog. You
may be surprised at the choice of bue cars on a red road and red logs on
a blue river but this does simplify the game quite a lot. When the frog is
crossing the road it must avoid blue cars and when it is crossing the
river it must avoid blue water and so all through the game the colour
blue indicates an area where the frog shouldn’t go.

Fig. 4.2. Graphics characters for lorry, frog and log

Lines 1100 to 1130 initialise the variables A% D%, to 32, the ASCII
code for space. These variables are used by PROCscroll and are best
described in that section. X% and Y%, are the current co-ordinates of
the frog and are initialised by lines 1160 and 1170.

The VDU 26:CLS command in line 1175 removes any text windows

65Frogling

(a) (b)

(c)

Fig. 11. Designs tor cut-out figures of the German forces in THE BRIDGE. (a) Officer;

(b) Private; (c) Sapper.

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 12. Examples of counters for playing THE BRIDGE. (a) German Private; (b)

reverse of (a) for use when wounded; (c) portable weapon; (d) panic marker; (e)

blown bridge marker; (f) rubble marker.

50 BBC Micro Wargaming

All units begin the game in active status. During the game they may
panic, become wounded, or be killed in action. With models, a panicking
soldier may be indicated by turning the model to face away from the
enemy. A wounded soldier is indicated by lying the model on its side, or by
replacing it with a model in a suitable posture. With counters a panicking
soldier is indicated by placing a ‘panic’ marker over the counter. A
wounded soldier is indicated by inverting the counter. The reverse side of
the counter bears a ’W’ to indicate this status. Units killed in action are
removed from the table or board.

Board wargamers need about a dozen ‘panic’ markers. A single marker
is needed to indicate that the bridge has been totally destroyed, and another
to indicate that it has been partly damaged. One of these is placed on the
bridge hex when damage has been effected. You also need three or four
‘rubble’ markers to be placed on building hexes to indicate that the building
has been reduced to rubble by a demolition charge. Model wargamers will
be able to devise their own ways of indicating damage to the bridge or
buildings.

In the rules which follow, those who are playing with models are asked
to make appropriate modifications, depending on the exact scale of their
models.

Up to four counters representing men may be stacked on any one hex. In
addition you may stack any number of portable weapon counters. But
weapon counters cannot move on their own; they must be ‘carried’. One
man may carry only one portable weapon (sappers carry none).

Sequence of play

(1) The Allied player deploys units (including portable weapons) first,
placing them anywhere within the area bounded to the east and south by the
road and to the west by the river.

(2) The German player deploys units second, placing them in any of the
three columns of hexes on the east side of the map.

(3) The game consists of ten turns, each of which is divided into two
player- turns, the German having the first player-turn.

(4) Each player-turn is divided into three phases, intended to represent
about one minute of real time:

(a) Advance Phase: the player advances any or all units. Units may not
enter hexes occupied by enemy units.
(b) Fire/ Advance Phase: the player either advances units again, or fires
their weapons. Units may enter hexes occupied by the enemy. Panic
markers are removed from all enemy units before firing begins.
(c) Close Combat Phase: in any hex in which there are units belonging
to both sides.

51First Attack

FILL DEMO

At the end of this program is the data for a machine code routine to fill
in any area on a graphics screen that has a border of a given colour in
any given colour. The routine will work in modes 0,1,2,4 & 5. The
area it is to fill must be fully enclosed by the border colour otherwise
the fill colour will escape and try to fill the rest of the screen. The data
for the machine code program is read in from the data statements and
checked as it is put into memory by lines 30-100.

To run the demo program PAGE must be set to &1100 and then
the program CHAINed from tape. The program then puts the machine
code into memory &0E00 to &1100. It then draws a cloud and a tree
and uses the fill routine to fill them in.

NOTES ON THE PROGRAM
The parameters of PROCFILL are the x & y coordinates of the start
position for the fill, colour in which to fill the area and the border colour
of the area.

PROCTREE is a recursive routine and calls itself to draw the branches
of the tree.

171

CHAPTER 3

GENETICS

Introduction

In many ways, the study of genetics lies at the heart of modern biology. If there is a
unifying concept in the life sciences, it may by the idea of evolution by natural
selection, an idea described quantitatively in the language of genetics.

Until quite recently, genetics meant simply the study of inheritance; and that
meant Mendei's laws and their exceptions. This is classical genetics.

The first three programs described in this chapter fall under this heading. MENDEL
is a simple simulation of some of Mendel's breeding experiments with peas. LINK
simulates the genetics of a dihybrid genetic situation invoiving two pairs of alleles
occupying loci on the same chromosome. SEXL simulates experiments involving a
sex-linked phenotype in Drosophila.

Increasingly, genetics is being used to generate an understanding of the
processes that have produced the staggering variety and range of forms of living
things, of evolution. This use of genetics is often called population genetics. The
fourth and fifth programs in this chapter are simulations in this area.

SICKLE allows the user to investigate a simple model in which selection brings
about the evolution of a model population. DRIFT demonstrates that in small
popuiations, evolution can occur in the absence of selection.

MENDEL – a program to illustrate classical genetics

This program is a simulation of experiments to demonstrate and investigate
Menders Laws.

Biological Background

Mendel's laws are the cornerstone of genetics. Students of O and A level
biological sciences are expected to gain a thorough understanding of these laws.
Future study in genetics is really impossible without an easy familiarity with them.

80

Mendel's laws are the rules of simple inheritance. The first law concerns the
particulate nature of inheritance, and states that for each feature of an organism
(phenotype), each somatic cell carries two particles or alleles.

Further, the law states that each gamete produced by an organism has only one of
these alleles. The nature of the two alleles in somatic cells, is referred to as the
cells' genotype. It is often the case that the two alleles are not identrcal, and one
may be dominant to the other.

One of Mendel's experiments involved crossing together two sorts of pea plants,
one with very tall stems and one with short or dwarf stems. He found that if the
parent plants used in this cross came from pure strains of tall or dwarf, that the
progeny or offspring produced, the so-called F1 generation were all tall stemmed.
Further, he found that if these F1 tall plants were allowed to self-fertilise, to
intercross, then the progeny produced consisted of 75% tall plants and 25% dwarf
ones.

The information for dwarf had 'skipped' a generation, but must have been present
in the F1 tall plants; it had been masked by tall information. Tall is dominant, dwarf
recessive.

This result can be explained if it is assumed that each parent cell, except gametes
contain two alleles. Let T be the tall allele, and t be the recessive allele. Then, the
tall parent has genotype TT, and the dwarf parent has genotype tt. If we assume
that the gatnetes produced by these parents each contain one of the pair of alieles
in somatic cells, then each tall gamete has genotype T, and each dwarf genotype
t. Thus each fertilisation of a tall gamete by a dwarf one {or vice versa) gives rise to
a zygote and hence a new plant of genotype Tt.

The phenotype of this plant is tall. Now, if one of these plants is allowed to self-
fertilise, or is crossed to a plant of the same genotype, then half of the gametes
produced by the F1 hybrid have the genotype T and half the genotype t. Assuming
that fertilisation occurs at random, and that gametes containing the allele T are as
likely to be fertilised, or effect fertilisation as those gametes containing t, then the
probabilities of the production of zygotes containing at least one T allele, or no T
alleles are .75 and .25 respectively. A similar argument applies to the
simultaneous and independent tossing of two coins. The probability of a result
consisting of a least one head is .75. That of two tails is .25.

Mendel's first law allows a prediction of the outcome when an F1 hybrid ts
crossed to an individual with the genotype tt. (An individual with both alleles the
same is homozygous for that pair of alleles, else it is heterozygous) When a
heterozygote, Tt is crossed with a homozygous recessive, it in this case, Mendel's
first law predicts that the progeny should consist of 50% tall and 50% dwarf plants.
The probabilities of occurence of zygotes containing at least one T or no Ts are
respectively .5 and .5. These probabilities are obtained, as above, by multiplying
together the relative frequencies of gametes of different genotypes produced by
the two parents. In the present case, the F1 plant produces two gamete types, T

81

G A M E S

BUILDING•BLOCKS

It is good practice to build up a library of tested procedures, either
before you write a program or build them up collectively from programs
written. To make full use of a procedure library, the procedures need to
be 'transportable'. This means that a procedure used in one program
should be able to be used within another program without modificaton.

This sometimes requires the use of global variables. A global variable is
a variable whose contents may be used or changed anywhere within a
program (unlike a LOCAL variable). Take, for example, the common
procedure "clear_message" used in this book.

The procedure's variables (b, f, x, y, x2, y2) are initialized to their default
values in the initialization section of a program. If you wanted to execute
the "clear_message" procedure with the b variable (background colour),
set it to 3 and the rest of the variables are left at their default values. You
would use the statement

PROCclear_message(b, t, x, y, x2, y2)
As long as these procedure variables are initialized, this procedure can
be said to be transportable.

BUILDING A PROGRAM FROM SCRATCH

When you write a program using PROCs and a main-loop the first step
is to break your program down into the steps that it will actually go
through.

A flowchart of your program would really help as you will identify the
different PROCs you will need from the flowchart.

Because we are aiming to design our programs around main-loops and
procedures, we will keep this concept in our flowcharting too, even to
the point of using REPEAT-UNTIL in the charts.

A flowchart is a way of representing a process as a collection of steps to
be taken and the effect of decisions on further steps within the process.
When flowcharting we use the following symbols.

denotes an entry or an exit point

denotes a process

denotes input or output

denotes a decision

8

20 DRAWING YOUR OWN BBC PROGRAMS

Calculate YB’
In figure 2.11 we need to find the length ON to discover the
new coordinate YE'. It is easy to see that the angle YOY' is
equal to XOX’’ and also equal to B’PR according to the same
rule above.

Also:
PB' = XB
OP = YE

and:
OQ = OP COS(a)
B'R = PB' SIN(a)
NQ = B'R
ON = OQ + QN

ON = OP COS(a) + PB’ SIN(a)

Therefore:-

YB’ = XB SIN(a) + YE COS(a)

P

N

Q R

X

X Y Y

O a

a

B

Fig. 2.11.

2 High resolution graphics 21

We generalize the relationship derived above to apply to any
point with coordinates X and Y to obtain its coordinates after
rotation, represented by U and V in the formulae below.

U = X COS(a) – Y SIN(a)
V = X SIN (a) +Y COS(a)

You will note that a, the angle of rotation, is measured
anticlockwise. It is important to remember that the BBC
computer works in radians not degrees when dealing with COS
and SIN (one radian is about 57 degrees).

We are now in a position to write a procedure to rotate any
shape through a given angle.

13000 DEF PROCROTATE(A)

13002 LOCAL PC,U,V,C,S

13004 C=COS(RAD(A))

13006 S=SIN(RAD(A))

13008 FOR PC=1 TO NOR

13010 U=P(PC,2)*C-P(PC,3)*S

13012 V=P(PC,2)*S+P(PC,3)*C

13014 P(PC,2)=U

13016 P(PC,3)=V

13018 NEXT PC

13020 ENDPROC

13022 :

We will now amend our program to rotate the square. To avoid
confusion, first delete the lines that are no longer needed, and
type in the lines below:

DELETE 190, 240

 190 PROCSCALE(3,3)

 200 PROCTRANS(640,512)

 210 PROCDRAW

 220 PROCROTATE(5)

 230 PROCDRAW

 240 :

126 Educational Games for the BBC Micro

10030 PRINT''"Unfortunately, the main computer has
"'"just gone mad and will not monitor the"'"cooler
s automatically. It will monitor"'"them, one at a
time, if you give it an"'"instruction to do so, bu
t it will only"

10040 PRINT"accept your right to tell it what to d
o if you can answer questions that it putsto you."

10050 PROCcont(23):CLS

10060 PRINT'"Your task is to keep the coolers work
inguntil the repair team have fixed the"'"computer
."''"All the questions you will be asked are answe
red by giving the name of an"'"Element."

10070 PRINT'"First of all you will be told the sym
bolused to stand for the element. If you"'"get the
 answer wrong you will be given asecond clue - the
 Atomic Weight of the element. If you still give
the wrong"

10080 PRINT"answer you will be given a final clue
- the Atomic Number of the element."

10090 ENDPROC

Main Program

It is interesting, perhaps, to try to establish where a game idea
comes from. In this case I wanted to use the chemical elements as
data for a clue-giving game with a similar structure to King of the
Castle. I thought that a picture of an atom, with electrons in orbit
round a nucleus, would make a good display and would be
suitable for data that concerned atomic number and atomic
weight. Next I needed to decide what was to happen in response
to right or wrong answers, and it seemed obvious to think in
terms of the electrons being made unstable by a wrong answer,
which could be illustrated by making them flash, and being
restabilised by a right answer. Of course, if all the electrons
become unstable then the atom must blow up (violence again!),
but how do I get the human player into the scenario? Defusing a
bomb? Controlling a power plant? I opted for the latter and made
the atom display board in its control room, with each electron
representing a cooler to keep the core under control. Now, how
to work in the asking of the questions? Obvious! My old friend

 History and Chemistry 127

the faulty computer. The end result is a simple, if somewhat
surreal, game which is as far removed from reality as usual.

Screen display from 'Power Station'

Quite a lot of the non-graphic routines in this program are
similar to those in King of the Castle, but the graphics are all
different. So if you are starting with the King of the Castle
program and editing it, delete lines 3000-3970 now. Lines 100,
200, 230, 240, 250, 320 and 470-999 are the same as in King of
the Castle. Lines 210, 220, 270, 290, 300, 310 and 330 all need to
be changed a bit, and lines 190, 285 and 325 must be added.

In PROCinit, delete the old lines 1010-1100 and enter the new
lines 1010-1080. This is a very noisy program at times because
lines 270 and 285 have SOUND commands in them that use
ENVELOPE1 (line 1060) to generate warning sirens when any of
the coolers are overheating. If you do not like sound then leave
the SOUND statements out, but if you only want it to be quieter
change the last two numbers in ENVELOPE1 (now given as 120,
100) to 80, 60.

 100 MODE5:HIMEM=H%:PROCinit

 190 PROCdisplay

 200 FOR K%=0 TO Q%

 210 PROCchoosequest

To produce the desired effect we first draw at each Z ordinate a
wide bar aligned along the X axis of the graph. This bar is then filled
with colour. Next we can draw a wide bar at the same Z ordinate but
aligned along the Y axis. To complete the pseudo-solid bar we draw in
a diamond shaped top for it. The result is vertical bars with different
coloured sides and atop ina third colour. Mode has been used with the
tops of the bars drawn in white. By changing the palette the colours
could be set to any desired combination to produce a suitable artistic
effect. Mode 2 would permit the use of more colours but resolution is
rather poor in Made 2.

Circular three axis plots

The three axis plots we have produced so far have used linear axes
but we can produce a rather interesting variation in which the base
plane of the plot is circular. This type of three axis plot can create
some rather attractive patterns.

 100 REM Circular 3D plot program

 110 MODE1

 115 REM Set up scaling factors

 120 K=RAD(180/2000)

 130 M=0.707

 135 REM Plot graph

 140 FOR X=-100 TO 100 STEP 2

 145 REM Set Y sweep limits

 150 YM=5*INT(SQR(10000-X*X)/5)

 160 FOR Y=YM TO -YM STEP -5

 165 REM Calculate Z ordinate

 170 LET Z=FNA(SQR(X*X+Y*Y))-M*Y

 180 IF Y=YM THEN 200

 185 REM Hidden line removal

 190 IF Z<Z1 THEN 220

 200 PLOT69,640+4*X,500+INT(2*Z)

 205 REM Update highest Z value

 210 Z1=Z

 220 NEXT Y

 230 NEXT X

 240 END

 245 REM Define Z function

 250 DEF FNA(Z)=10*COS(K*(X*X+Y*Y))

Fig. 10.9. Program to produce a circular three dimensional plot.

172 Electron Graphics and Sound

To give an impression of depth the X – Y plane is displayed as an
ellipse and looks like a flat disk viewed from an angle. The Z
ordinates have the effect of producing a series of elliptical ridges in
the disk surface. The X – Y plane in this type of plot is produced by
using the squares equation for a circle as the relationship between X
and Y. To produce an ellipse the X scale factor is made larger than the
Y scale factor. Z values are simply added to the calculated Y co-
ordinates and points are plotted at the tops of the Z ordinates. Figure
10.9 shows a program listing to produce this type of three
dimensional plot. The result on the screen will be similar to Fig.
10.10.

Fig. 10.10. Display produced by three dimensional circular plot
program.

The shape of the plot is determined by the function used to
calculate Z which is defined at the erid of the program by the DEF FN
statement. A point to note here is that for the Electron the DEF FN
statement should be placed after the END statement of the program.
Programs of this type written for other computers will probably have
the DEF FN statement near the start of the program. If such programs
are being converted for use on the Electron it ts advisable to move the
DEF FN statement to the end of the program as we have done here.

Line 190 in the program provides a simple form of hidden line
removal which effectively blanks out any points on the curve that lie
behind the front surface of the plot. For the first point in each set of Y

173The Third Dimension

CHAPTER FIVE

LANGUAGE? �
WHAT LANGUAGE?

Having spent all of the last chapter explaining the inner
workings of Grafrite, our interpretive language, I now
confess (wait for it) � Grafrite is not a language! Well,
not yet. Why? Consider what happens when you press
BREAK � you return to BASIC. Press the BREAK key
while in BASIC and what happens? You stay in BASIC.
For Grafrite to fully make the transition from a fancy
piece of machine code to a language it must react as
BASIC does to a BREAK: in short, stay in Grafrite.

There is another aspect to consider. Grafrite is
entered via a CALL command. CALL performs a JSR to
the specified address, leaving an RTS address on the
stack. A full-bodied language would not be expecting to
perform an RTS and as such should itself take control of
the stack.

From the debugging and testing point of view, it is
much better to approach language writing as outlined
already. The two changes above should be left till the
last. Taking control of the BREAK key means you must
also take control of the error-handling facilities. Use
those already available from BASIC rather than waste
time and effort supplying om own routines � which
could themselves be wrong!

Handling BRK

Before tackling the BREAK key let us first examine how
we can trap the software BRK. In BBC BASIC the BRK
instruction (opcode &00) is used to define an error. For
instance, when an unknown command occurs, BASIC
jumps to a suitable error message, for example
'Mistake'. The error message is stored like this:

81

BRK \ software BRK

04 \ error number

"Mistake" \ ASCII message

BRK \ Software BRK

To see this in action try the following short program:

Listing 5.1

 10 REM Error Messages

 20 REM Mastering Interpreters

 30 REM and Compilers

 40 REM (C) Bruce Smith 1986

 50 :

 60 P%=&900

 70 [

 80 .error

 90 LDA #7

 100 JSR &FFE3

 110 BRK

 120]

 130 ?P%=5

 140 P%=P%+1

 150 $P%="Not a Mistake!"

 160 P%=P%+LEN($P%)

 170 [

 180 BRK

 190]

 200 CALL error

When you run this it will print out the error message
'Not A Mistake!' Try typing:

PRINT ERL

and the error number will be printed. So it does work.
Before indirecting through BRKV the MOS does some
housekeeping along these lines:

STA &FC \ save accumulator

PLA \ set flags at BRK

PHA \ resave

AND #&10 \ was it an IRQ?

82

96 Quality Programs for the Electron

basic unit (one hexagon and one diamond) is made up of 596 mode
5 pixels, excluding the lines defining the shapes. The program
simulates the seeping light by making 20 passes through each unit,
filling in a few more pixels each time.

Unfortunately, the decision as to which pixels should be filled
in on which pass is almost impossible to program. The incoming
colour must satisfy lots of rules which are not very easy to specify.
It must, for instance, start by affecting the far side of each unit, and
leave the near side until quite late. While it is theoretically possible
to program all such constraints, and then let the computer
randomly choose pixels which satisfy them, there are two reasons
for not doing it this way. First, it would take the programmer too
long to appreciate and specify all the constraints; and second, it
would take the computer too long to do it would spend more time
discarding unsuitable pixels than it would filling in the new colour.

So I have decided for myself how many pixels should be
affected in each pass, and even which ones they are. That
information must be passed to the program as data. I apologise for
the quantity of it, but assure you that the effect is worth the time
you will spend typing it in and proof reading it. (Of course if you
have the cassette of the programs, there's not a lot of effort
involved.)

By a historical accident, Hexagons was first written as two
programs (the accident was that it was written for the model A
BBC micro, which doesn't have enough storage to run it as one
program.) Although the Electron could easily handle it in one go, I
have left it as two programs because of two interesting points
which this raises. First there is the fairly minor matter of one
program automatically calling another, with the CHAIN
command. And second there is the fact that the first program
stores information for the second to use, in such a way that it isn't
destroyed when the second program is loaded.

How to use the programs

Type in the first program and save it on tape (or disc, if you have
one). Type in the second program and save it. You don't have to
use the names that I've used for the files, but you must be sure that

Hexagons 97

the name you use in the CHAIN command in the first program is
the same as the name you use for the file the second program is
SAVEd in. If you have a Model A, don't type the comments in the
second program - they take up too much space.

Rewind the tape to a spot before the first program, LOAD it
and RUN it (or simply CHAIN it). It will search for the second
program on the tape when it is ready.

The program will run until broken into with ESCAPE or
BREAK. It takes about 20 minutes to complete a full cycle. I see it as
fulfilling the same sort of function as a goldfish bowl — something
soothing to look at now and then, rather than something to
concentrate on.

Hexagons, as a darker colour diffuses in from the left

Program listing
 100 REM HEXAGON - the first phase of the hexagons program
- by Simon.
 110 DATA6,0,6,34,8,35,15,19,15,23,16,9,16,12,16,14,16,16,1
6,22,17,18,17,19
 120 DATA5,34,6,35,7,0,7,34,13,12,13,15,14,10,14,14,15,11,1

a video game. To understand fully the effect of this program it may be necessary
to revise the section relating to screen memory arrangement given in chapter 5.

Example 13.2

We can also use machine code to move parts of a picture about the screen. The
simple program in listing 13.3 creates a routine (placed at locations starting at
&B00) that transfers 1K of the screen, a square area of the screen corresponding
to eight by eight character blocks, from any one of six positions (numbered 0-5)
to any other of these positions.

Listing 13.3

 10 REM CALL &B00 WILL MOVE PICTURE FROM POSITION X% TO POSITION

 Y% (X% AND Y% IN THE RANGE 0-5)

 20 FOR PASS=0 TO 3 STEP 3

 30 P%=&B00

 40 [OPT PASS

 50 LDA HITAB,X : STA &71

 60 LDA LOTAB,X : STA &70

 70 TYA : TAX : LDA HITAB,X : STA &73

 80 LDA LOTAB,X : STA &72

 90 LDX #8

100 .LINLOP

110 TXA : PHA

120 LDY #&7F

130 .BYTELOP

140 LDA (&70),Y

150 STA (&72),Y

160 DEY

170 BPL BYTELOP

180 CLC : LDA &70 : ADC #&80 : STA &70

190 LDA &71 : ADC#2 : STA &71

200 CLC : LDA &72 : ADC #&80 : STA &72

210 LDA &73 : ADC#2 : STA &73

220 PLA : TAX : DEX

230 BNE LINLOP

240 RTS

250 .HITAB : JSR 0 : JSR 0

260 .LOTAB

270]

280 NEXT

290 FOR I=0 TO 5

300 READ M

310 HITAB?I=M DIV &100

320 LOTAB?I=M MOD &100

330 NEXT I

339 REM ADDRESS OF TOP LEFT HAND CORNER OF EACH PICTURE (0-5)

340 DATA &5180,&6C00,&6C80,&6D00,&6D80,&6E00

We can assemble this routine into memory ready for use by another program.
In chapter 10 we gave a program that drew a hidden surface picture of a sphere.
Running this program with HORIZ = 12 and VERT = 9 draws an orthographic
projection of such a sphere at the centre of the screen. The dimension of the
picture just fits in an area equivalent to eight by eight character blocks (position
0). We draw five such pictures of a sphere with 10 vertical segments and 10

230 Advanced Graphics with the Acorn Electron

50

SECTION 3 BUSINESS
P20 Loan Repayment Period

This program uses the formula

T =
–1
N

log 1 – P.R
N.A

log 1 + R
N

()
()

where

T= period in years.
P= principal.
R= rate of interest.
N= number of payments each year.
A= amount of each repayment.

This could be calculated by using a calculator, but it is far quicker
to allow the computer to do the work tor you.

This program could be improved by designing a more robust
input routine, to check for bad keyboard input,

COMMANDS

Key in program and type RUN.
Follow instructions.

 100 REM Program P20 - Loan Repayment Period
 110 MODE7
 120 PRINT "If you are about to take out a loan "
 130 PRINT "it could be useful to consider how long"
 140 PRINT "it will be before the loan is repaid."
 150 PRINT "To use this program you must input "
 160 PRINT TAB(5)"Amount borrowed"
 170 PRINT TAB(5)"Annual interest rate"
 180 PRINT TAB(5)"Number of payments per year"
 190 PRINT TAB(5)"Amount of payments"
 200 PRINT ''"Press any key to continue"
 210 Z=GET
 220 CLS
 230 INPUT TAB(5)"Amount borrowed £"P
 240 INPUT TAB(5)"Annual interest rate (%) "rate:
 rate=rate/100
 250 INPUT TAB(5)"Number of payments per year "N

 430 hand1$=hand1$+LEFT$(shuffled$,2)
 440 shuffled$=MID$(shuffled$,3)
 450 hand2$=hand2$+LEFT$(shuffled$,2)
 460 shuffled$=MID$(shuffled$,3)
 470 hand3$=hand3$+LEFT$(shuffled$,2)
 480 shuffled$=MID$(shuffled$,3)
 490 hand4$=hand4$+LEFT$(shuffled$,2)
 500 shuffled$=MID$(shuffled$,3)
 510 NEXT I
 520 DIM X(4)
 530 CLS
 540 VDU 19,0,2;0;19,3,0;0;
 550 PROCdeal(hand1$,3,0)
 560 PROCdeal(hand2$,0,8)
 570 PROCdeal(hand3$,8,16)
 580 PROCdeal(hand4$,3,24)
 590 END
 600
 610 DEF FNsetup(suit$,s$)
 620 FOR I=2 TO 9
 630 suit$=suit$+STR$(I)+s$
 640 NEXT I
 650 suit$="A"+s$+suit$+"T"+s$+"J"+s$+"Q"+s$+"K"+s $
 660 =suit$
 670
 680 DEF PROCdeal(hand$,X,R)
 690 X(1)=X:X(2)=X:X(3)=X:X(4)=X
 700 FOR I=1 TO 13
 710 card$=MID$(hand$,I*2-1,2)
 720 IF RIGHT$(card$,1)=h$ OR RIGHT$(card$,1)=d$ THEN COL
OUR 1 ELSE COLOUR 3
 730 Y=ASC(RIGHT$(card$,1))-223
 740 PRINT TAB(X(Y),Y+R)card$;
 750 X(Y)=X(Y)+2
 760 NEXT I
 770 ENDPROC

150 P75 Shuffle

7
Capture the Quark

What on earth is a ‘quark’? Well may you ask that question, but to find
out you’ll have to play this game. Here are just a few clues. The game
is played on an eight-by-eight checkered board and the object of the
game is to trap the quark and prevent him from reaching the bottom of
the board. To do this you have two, three or four (determined at
random) pieces, or ‘quatlins’, which can be moved diagonally one
square at a time and only up the board. The quark also moves
diagonally but he can move both forwards and backwards.

How to play

At the beginning of the game your quatlins (two, three or four of them
according to the luck of the draw) are ranged along the bottom line
and the quark is at the top of the board. It is your move first.

8
Commando Jump

This game is a real test of your reaction time and dexterity, and is
quite compulsive to play. A bright red wall of varying height appears
with a little man figure beside it. A countdown “Ready, Steady, GO”
is flashed up on the left of the screen and on the word “GO” the man
has to jump as high as possible and then scrabble up the remainder of
the wall. Y our success in this game depends entirely on your quick
wits and nimble fingers.

How to play

On the word “GO”, and no sooner, press any key to make the man
jump. The height of the initial jump depends entirely on the delay
between the signal appearing and your key press. The quicker you
react, the higher the man will jump. The time left to scale the wall is
displayed on the screen and while the rest of your five seconds tick
away you must keep on pressing any key to get the man over the

titles and the instructions (when requested from the menu), and
provide the data for the program. Great care must be exercised to
ensure the data is typed in correctly. The 999 which appears in
the data statements after line 1420 acts as a data terminator, but
the trailing zeroes are needed to prevent the READ statements in
lines 660-700 from failing.

1750-2100 These lines contain the menu procedure, and the
text display for the routines to display elements by periodic
groupings, with a subsidiary menu for the choice of period. Note
the keyboard validations in lines 1910-1960 and 2060-2080.

2110-2800 These lines have the procedure for display of
chosen periods of the elements.

2810-3680 Procedures to display particular groups of
elements as chosen in lines 3130-3160.

3690-end This sections contains the test sections of the
program. The conversion routine in lines 4100-4160 means the
program will accept answers both in lower and upper case. The
correct answers are displayed when you have finished the test.
Both tests are 20 questions at random.

Educational Note

These types of programs are good exercises in information
retrieval for upper school youngsters. There is nothing in the
program which cannot be found in a book, but the presentation
in groupings and periods and the very interaction with the
computer has tutorial value. The level of knowledge assumed is
good O-level or A-level, and below this standard youngsters will
not find it very meaningful. It provides a good quick reference
for teachers, but must of course be located before it is needed to
fulfil this function.

Program Listing

 10 REM =============================
 20 REM PERIODIC TABLE
 30 REM
 40 REM BY CW FEB 1983
 50 REM .
 60 REM
 70 DIM NAME$(103) ,SYMBOL$(103) ,GROUP%(8,8) ,PERIO D%(7,9) ,T
RANS%(3,11) ,RARE%(15) ,URAN%(15) ,TEST%(20) ,ANS$(20)

220

Guess

One of the traditional programs which one can almost certainly
find in any book claiming to teach beginners how to program is
a program in which the user must try to guess the computer's
number, aided by hints such as 'higher' or 'lower'.

When I first became very interested in computers, I spent many
hours developing a program which would have the computer
guessing the user's number. I finally succeeded and the
program in this book incorporates two programs, the first where
the user must guess the computer's number as quickly as
possible, and the second in which the computer must guess the
user's. It is fascinating to watch the computer get closer and
closer in guesses to the number hidden in your head, and this
program easily fulfils the demands of a program which
simulates artificial intelligence — it is impossible to tell whether
you are communicating with a computer or a person on a
terminal somewhere else. The computer is very good at
guessing numbers, and usually guesses my number in less than
it takes me to guess its number on average.

HOW IT WORKS
The part where you must guess the computer's number is
simple enough. The computer guesses your number by using
two variables MIN and MAX and it alters these variables
according to the hints {higher or lower) which you provide. A
randon element is incorporated to prevent the program
developing an endless loop. A count is used to see how many
times the computer is calculating a number, and if it gets too
high, the computer decides that its guesses are too cold and
alters its range accordingly.

45

STRUCTURE

Line Effect
10-100 Main program — calls PROCedures.
PROCIN Title page
PROCGM User guesses computer' s number.
PROCGY Computer guesses user's number.
PROCH Computer's guess is too high.
PROCL Computer's guess is too low.
PROCS Computer's guess is fine-tuned.
PROCR Random element
PROCW Displays winner.
PROCHI Prints 'higher'.
PROCLO Prints 'lower'.
PROCO Prints 'correct'.
PROCT Second title page.
PROCGL Computer is jubilant.

LENGTH IN BYTES
2164

RUNNING ON A MODEL A
No modifications required.

46

5
Sum Difference

We thought about calling this game 'some difference' as it isn't
nearly as easy as it looks at first.

You are being told by your computer that it is thinking of two
numbers between 1 and 20. It will tell you the total sum and the
difference between the two numbers. All you have to do is
correctly guess the answer.

Example: The sum of the numbers is 13
The difference is 9
What are the numbers?
Answer 2 and 11

Simple isn't it?

How to play

Your computer will tell you the sum of the numbers it is thinking
of and the difference and ask for your answers.

After each number press RETURN.

If you are correct the score increases on the top of the board.

As you become better at this game the computer will move the
range of numbers from 1-20 to 1-25 and so on.

A wrong answer will end the game completely and you will be
asked if you wish to compete again. High scores will be recorded
on the screen to allow you to compete for the high score title.

Programming Hints

You can make the game tougher from the very beginning by
increasing the value in line 20 so that the range is wider
immediately.

Program

 10 REM Sum and D i f fe rence
 20 H igh=0:Score=0:Max imum=20
 30 MODE7
 40 REPEAT:CLS
 50 PROCHeader
 60 PROCScore
 70 Rand1=RND(Max imum)
 80 REPEAT
 90 Rand2=RND(Max imum)
 100 UNTILRand2<=Rand1
 110 PRINTTAB(0 ,11) ;CHR$129; " I 'm th ink ing
 o f two numbers be tween" 'CHR$129; "1 and " ;
Max imum
 120 PRINTTAB(0 ,14) ;CHR$131; "The sum o f t
he two numbers i s " ;Rand1+Rand2
 130 PRINTTAB(0 ,16) ;CHR$131; "The d i f fe ren
ce is " ;Rand1-Rand2

34 Sum Difference

Division One (Model A)

This time around you're a soccer manager whose overall proficiency will
be judged at the end of a season. There are details of matches played and
goals scored, points awarded, games remaining and a constantly changing
league table. The computer will calculate the results according to the
relative strengths of the teams, whether the game was played at home or
away, and so on.

If things are going badly it could be that you'll have to intervene at the
touchline, changing players' positions and generally backseat booting. Is it
going to be championship or relegation? It's up to you and the lads. And
the DATA statements which can be messed around with if you feel that
we've been biased one way or another.

 10 REM BBC VERSION ** * * * * * * * * * *
 20 REM DIVISION ONE.WALWYN
 30 ON EROR GOTO 2660
 40 P5=0 : PL=0
 50 MODE 7 : VDU 14 ,23 ,1 ,0 ;0 ;0 ;0 ;
 60 PROCins t ruc t ions
 70 J=0
 80 DIM TZ(15 ,15) ,T$(15) ,TA(15) ,TM(15) ,TD(1
5) ,TT(15) ,TP(15) ,TF(15)
 90 DIM D(1 ,9) ,XS(1 ,6) ,YS(1 ,6) ,X(1 ,6) ,Y(1 ,6
) ,S(1 ,6)
 100 FOR I=1 TO 15 : READ T$(I) ,TA(I) ,TM(I) ,
TD(I) : NEXT I
 110 DATA "L IVERPOOL" ,9 ,6 ,6 , "MAN UTD" ,8 ,5 ,6 ,
" IPSWICH" ,6 ,7 ,6 , "ARSENAL" ,7 ,6 ,6
 120 DATA "STHMPTON",8 ,5 ,5 , "A V ILLA" ,6 ,6 ,5 , "
NOTTM F" ,9 ,5 ,5 , "SWANSEA" ,5 ,6 ,5
 130 DATA "WOLVES" ,5 ,5 ,5 , "CRYSTAL P" ,5 ,6 ,5 , "
TOTTENHAM",8 ,4 ,6 , "NORWICH" ,4 ,5 ,4
 140 DATA "COVENTRY" ,4 ,4 ,4 , "LEEDS" ,4 ,3 ,4 , "W
BROM",8 ,3 ,4
 150 FOR X=0 TO 1 : FOR Y=0 TO 9 : D(X,Y)=Y+
128-X*128 : NEXT Y : NEXT X
 160 FOR J=1 TO 6 : READ XS(0 ,J) ,YS(0 ,J) : N
EXT
 170 FOR J=1 TO 6 : READ XS(1 ,J) ,YS(1 ,J) : N

THE ADVANCED
BASIC ROM
USER GUIDE
FOR THE BBC MICRO

&7FFF

& 0 0 0 0

&BFFF

&BFFF
Published by the Cambridge Microcomputer Centre

COLIN PHARO

9 TRIGNOMETRICAL
MANIPULATIONS
The previous chapter gave typical timings for all of the BASIC
subroutines. Inspection of these timings reveals the fact that
trignometrical functions are especially time consuming. There are a
number of different methods which can often be used to get round
this problem and this chapter explains many of therm Each method
is illustrated by the polygonal circle discussed in Chapter 5, but the
methods are applicable to many situations in which trignometry is
used. It should be remembered that the conventional method of
drawing circles takes nearly 6 seconds in BASIC and even in
machine code requires 5.5 seconds. With a little chicanery,
considerable improvements on these times may be achieved. Apart
from the first method which must use assembly language, BASIC is
used in demonstration programs so that the methods are easier to
understand.

9.1 Fixed Shapes Method

The following program illustrates a method that can be used
whenever the application draws a geometric shape of fixed
dimensions in a fixed position. In this method, all the coordinates to
be plotted are stored as constants within the program. In the
demonstration program, the two functions, XCOORD and YCOORD
respectively, store away all 100 X and Y coordinates of the circle to
be plotted. The program itself simply plots these points. All of the
BASIC parts of the program arc disposable. The generated machine
code draws the circle in 0.28 seconds. Of course, this method uses a
lot of memory to store coordinates (404 bytes in this example).
Moreover, it is not a general purpose routine to draw many circles of
different sizes. Nevertheless. it is the quickest method and is useful
in many applications.

156

Exercise 6.2
Write variations on this standard ‘histo’ procedure that can be substituted into the
complete package as and when required. For example write a procedure that
draws the histogram as a set of pairs of bars. The space between any two bars
that form a pair should be half the distance between neighbouring bars that do
not form a pair. Use this to construct diagrams that are similar to figure 6.2.

Figure 6.2

Example 6.2
In listing 6.3 we give an example of such a replacement ‘histo’ procedure. This
version of ‘histo’ (using a variation on the fake-perspective cube procedure from
chapter 1) produces an apparently three-dimensional graph. Two data values are
requested for each bar, a MAXimum and a MINimum; the maximum bar is
drawn behind the minimum bar. This program can be used to create charts
similar to figure 6.3 which shows the monthly temperature variation in Egham.

Exercise 6.3
There are many, many more possible variations, for example drawing bars above
and below a central line in order to display fluctuations in currency exchange
rates. See the Money Programme on BBC2 for ideas. The fundamental notions
we have introduced here should enable you to produce histograms to your own
specifications.

116 Advanced Graphics with the BBC Model B Microcomputer

assume that the plane of symmetry is the y/z plane, and so for every point (x, y, z)
on the jet there is also a corresponding point (−x, y, z). To draw figure 9.3 we use
all the graphics and 4 × 4 matrix routines, listing 9.1 and 9.2, together with
listing 9.9, ‘scene3’ and construction procedure ‘jet’ which generates all the
vertices of the aeroplane that have positive x-coordinates, and thus stores
information only about one-half of the jet. To construct the complete aeroplane
we also need a ‘drawit’ procedure (also in listing 9.9) which draws one side of
the jet and then, by reversing the signs of all the x-values, draws the other.

It is simple to construct these figures, just plan your object in various sections
on a piece of graph paper, number the important vertices and note which pairs of
vertices are joined by lines. The coordinate values can be read directly from the
grid on the paper. The data for figure 9.3 are HORIZ = 160, VERT = 120, (EX,
EY, EZ) = (1, 2, 3) and (DX, DY, DZ) = (0, 0, 0).

Figure 9.4

Bodies of Revolution

This far in our construction of objects we have relied on DATA to input all the
information about lines and vertices. We now consider a type of object where
only a small amount of information is required for a quite complex object − this
is a body of revolution, an example of which is shown in figure 9.4.

The method is simply to create a defining sequence of NUMV lines in the x/y
plane through the origin; this is called the definition set. We then revolve

Orthographic Projections 175

114 Advanced Machine Code Techniques for the BBC Micro

two-dimensional string arrays. It will also include routines which sort fixed
length multi-field records. They are given complete with BASIC parameter
passing lines so they can be entered and exhaustively tested. It should be
pointed out that the machine code portion of the listings will stand alone as
subroutines, providing that:

(a) the correct parameters are passed from any BASIC program;
(b) the code is lodged either in one of the safe areas (not necessarily the
areas used in our listings) or dynamically, above or below BASIC, by the use
of the DIM statement.

All the programs in this chapter are concerned with sorting data into either
numerical or alphabetical order and will be useful in compiling indexes,
customer lists, domestic accounts, hobby collections (butterflies, stamps,
beetles) etc. They could also be employed as routines within general purpose
filing systems to store or retrieve information according to some
predetermined order.

Bubble sort of a BASIC integer array

The bubble sort is well-known but often despised because it is slow. It is one
of the simplest sort routines to understand and, providing there are not too
many elements in the array, can be acceptable if written in machine code. It
provides a good starting point for handling multibyte integers.

Because the programs which follow are intended to be used in conjunction
with BASIC, via CALL parameters, it is important to understand how the
interpreter allocates variable space.

How integer array variables are stored
The four bytes, allocated to each integer array variable, are arranged as
follows:

increasing memorysign bit
(bit 7)

4 3 2 1

MSB LSB

Chapter Six Sort Routines 115

RETURN

DECREMENT NUMBER BY 1 (2 BYTES)

INCREMENT CYCLE (2 BYTES)

SWAP INTEGERS A BYTE AT A TIME (4 BYTES)

SET SWAP FLAG

IN ORDER

COMPARE INTEGERS

ADD 4 TO POINTER 1 AND STORE IN POINTER 2
(2 BYTES)

POINTER 2 BECOMES POINTER 1 (2 BYTES)

OBTAIN START ADDRESS OF INTEGER ARRAY
FROM CALL PARAMETER BLOCK AND STORE IN

POINTER 2 (2 BYTES)

SET FLAG TO ZERO (1 BYTE)
SET CYCLE TO ZERO (2 BYTES)

DECREMENT NUMBER BY 1 (2 BYTES)

GET NUMBER OF INTEGERS IN BASIC ARRAY
FROM CALL PARAMETER BLOCK AND STORE IN
NUMBER (2 BYTES)

START

CYCLE = NUMBER
(2 BYTES)

SWAP
FLAG CLEAR

(1 BYTE)

NUMBER=0
(2 BYTES)

8

9

10

11

12
NO

YES

1

2

3

4

5

6

7

NO

YES

Fig. 6.1. Flowchart for integer array bubble sort.

Chapter Six File Storage 85

to store DATA in the Ith element. Two-dimensional arrays are just as
easy; the only real change is that the expression in lines 1020 and 20l0
becomes:

PTR# F=I*6+N*J*6

to access the I,Jth element of the array.

Using files from assembler

The BBC Micro's filing system is almost as easy to use from 6502
assembler as from BASIC. There is a great similarity between the MOS
routines used to manipulate files and the equivalent BASIC commands.
For example, the routines OSBPUT and OSBGET will write and read a
single byte in the same way that BPUT and BGET do. Table 6.1 gives
details of the MOS routines corresponding to each of the BASIC file
operations:

Table 6.1

BASIC MOS routine parameters

OPENIN OSFIND (&FFCE) A=&40, Y,X address of file name.
On return Y contains the channel number.
Y=0 if OSFIND cannot open the file

OPENOUT OSFIND (&FFCE) As for OPENIN but A=&80.
OPENUP OSFIND (&FFCE) As for OPENIN but A=&C0.
CLOSE OSFIND (&FFCE) A=0, Y=channel number of file to be

closed. (If Y=0 then all files are closed.)
BPUT OSBPUT (&FFD4) A=byte to be written, Y=channel number
BGET OSBGET (&FFD7) Y=channel number. On return A contains

byte read from file. Carry flag=1 if an error
has occurred in which case A contains an
error code. (&FF is 'end of file')

There are other MOS routines concerned with file handling but the ones
given in Table 6.1 are those most often used. For example, there is a MOS
routine, OSFILE, that performs the same action as the BASIC commands
SAVE and LOAD. There are also a number of routines that do not apply
to files stored on cassette. In particular, the needs of random access disk
files are catered for by OSARGS (&FFDA). On calling this routine the X
register should contain the address of the start of four memory locations in
page zero. These are used to hold the input value, or the result of calling
OSARGS, in the usual four byte integer format. Calling OSARGS with a
channel number in Y will read the file's current position pointer if A=0,
write the current position pointer if A=1, and read the file's length if A=2.
A call to OSARGS with A = &FF will ensure that any alterations made to
the file are actually written out rather than just sitting in a buffer.

86 Advanced Programming for the BBC Micro

OSARGS also has a number of other functions including returning the
code of the currently active filing system. This was used in the function
FN file system that can be used from BASIC to discover which type of
file device is in use. There is nothing complicated about using these filing
system routines as they provide the same set of operations as their
equivalents in BASIC.

A disk sector editor

One of the most useful utilities that any disk user can possess is asector
editor. A sector editor will read in any sector of a disk and display it in
hex or in ASCII characters and then allow you to write it back to disk
after making any changes to the data that are necessary. This may sound
like a difficult program but the disk filing system includes an extension to
the MOS routine OSWORD to read or write a sector. Calling OSWORD
with the A register set to &7F will read or write a sector according to the
contents of a parameter block.

byte meaning

0 drive number
1-4 address of sector buffer
5 3
6 &53=read sector &4B=write sector
7 track number
8 sector number
9 &21

This has to be set up before entering OSWORD and its address stored in
the X and Y registers.

Using this information a sector editor is easy to write:

 10 REM SECTOR EDITOR
 20 DIM SEC_BUF% 255
 30 DIM INS_BLK% 50
 40 MODE 4
 60 PROCparm_get
 80 PROCsect_op
 90 PROCsect_pr in t
 100 GOTO 60

 1000 DEF PROCparm_get
 1010 PRINT TAB(0 ,28) ;

Channel 2
data

Clock 1

Channel 1
data

Clock 2

In general the current note for each channel will be in a
different position in the data streams. The clocks will tend
to show equal elapsed times. Each time a SOUND statement is
obeyed, the duration of the note is added to the clock
associated with that channel. At each step we must obey a
SOUND statement for the channel whose clock shows the least
elapsed time. We require to repeat the following operation:

IF clock1 > clock2 THEN SOUND statement for channel 2

ELSE SOUND statement for channel 1

The program then selects one out of two alternative courses
of action and this ensures that the channels free run and
are not subject to interference from each other. Effectively
we have removed the artificial connection in the parallel
data streams between notes in different channels that have
different duration values.

An alternative method of playing notes of a two-voice
melody from separate data streams is to use the function
ADVAL to test the channel queue status. For example, the
expression 'ADVAL(-6)' has a value indicating the number of
empty places on the channel 1 queue (-7 for channel 2 and -8
for channel 3). Thus, we could use:

IF ADVAL(-6)>0 AND voice 1 not yet finished THEN
SOUND statement for channel 1

IF ADVAL(-7)>0 AND voice 2 not yet finished THEN
SOUND statement for channel 2

154

This ensures that no SOUND statement is obeyed if a channel
queue is full. The end effect is exactly the same as that of
the clock algorithm. Using ADVAL, a separate test is needed
In check whether a voice has finished, whereas with the
clock method this possibility can be dealt with by setting
the clock to a large value when the last SOUND statement for
that voice is obeyed. The clock algorithm also makes it easy
In incorporate a common musical requirement - emphasis of
tho first note in every bar. Here the state of a clock could
be used to recognise the first note of a bar.

Transposing
Another tedious task to be overcome before we start getting
the machine to play arrangements is transposing from a
musical score to a set of pitch numbers and associated
notation. Transposing directly from the black dots to pitch
numbers and durations in 1/20ths of a second can be tedious
and error prone. You can write a graphics 'picking and
dragging' program to input the music onto a screen stave,
and this is a commonly adopted approach, but we have not
space for that. Instead we shall adopt a character
convention, and list the music in DATA statements using the
following tables.

code musical convention duration (for metronome 150)

t 1/32 1
;v|;v|;xvxvJJL

s 1/16 29
ds dotted 1/16 39?

e 1/8 47
de dotted 1/8 67?

q 1/4 85
dq dotted 1/4 125?

h 1/2 163
dh dotted 1/2 243?

w whole 322
Remember that there are notes that cannot be accurately
represented at this tempo. For example a dotted 1/32 is 1.5
(only 1 or 2 can be used as a duration parameter in a SOUND
statement). Similarly a 1/16 triplet is 4/3 per note, an 1/8
triplet 8/3 per note and a 1/4 triplet 16/3 per note.

155

Chapter 4 Animation techniques

The commonest animation technique that you are likely to use
on your Electron will be character animation, where objects
are moved about the screen by printing and reprinting
characters. In any of the graphics modes, a character shape
can be displayed by a PRINT statement in considerably less
time than it would take to draw the same shape using
graphics commands. This is because of the fast techniques
used to fill the area of the screen memory that is to be
occupied by the character. In MODE 7, character printing is
even faster than in the graphics modes.

We shall see later in the chapter how to define our own
character shapes but for the time being, the objects being
moved will be strings of standard characters. Such simple
animation of words and numbers is a powerful tool in
computer-assisted learning systems as we shall demonstrate
shortly.

Although the use of DRAW and PLOT facilities for
nnimation is limited by lack of speed, towards the end of
the chapter we shall look into techniques for the animation
of simple line drawings such as stick figures.

4.1 User-defined characters
In modes 0, 1, 2, 4 and 5, the screen is divided up into a
number of 'pixels'. For example, in modes 1 and 4, there are
320x256 pixels.

In modes 3 and 6, the screen is divided into horizontal
strips of pixels which are separated by strips of background
colour. Each strip is 8 pixels deep.

In any of modes 0 to 6, printing a character has the
effect of filling an 8x8 group of pixels with a pattern of
foreground and background colour. For example, the pattern
for "A" shown on the next page.

Also associated with each character is an ASCII code
number in the range O to 255. This code is used inside the
computer to refer to the character. The ASCII code for "A"
is 65. When the character whose code number is 65 is to be
displayed on the screen by a PRINT statement, the above
pattern of foreground and background colour is inserted into
the screen memory where information is stored about what is
currently displayed on the screen.

106

The user is normally free to define the character shapes
that are associated with ASCII code numbers 224 to 255, and
this is particularly useful when creating shapes for use in
animation. In fact, it is possible for the user to define
shapes for a much greater range of ASCII codes. We shall
explain how to do this shortly.

Once a new character shape has been defined, it can be
displayed on the screen at the same speed as the predefined
characters that we have used so far in this chapter.

The use of user-defined character shapes has two
advantages over the use of PLOT instructions to draw shapes.
Firstly, as we have already seen, a character shape is
dislayed on the screen at a much greater speed than can be
achieved by using PLOT facilities. Secondly, the sequence of
PLOT statements needed to draw a complex shape such as a
spaceship would be rather lengthy.

Single character shapes
Let us demonstrate the process of defining new character
shapes by defining some Greek letters. These could be useful
to a scientist or a mathematician wishing to display
muthematical equations. The shape required for alpha is

Note that in MODES 2 and 5, a pixel (and therefore a
character) is elongated horizontally. Each row in the 8x8
pattern can be viewed as a byte (eight bits - see Appendix

107

UHF

VIDEO

SPEAKER EXPANSION BUS

POWER
SUPPLY

AMPLIFIER

MODERATOR

COLOUR
MONITOR

CASSETTE

CASSETTE
INTERFACE

VIDEO
CIRCUIT

32K BYTES

RAM

ULA

6502A
CPU

MOS

+

BASIC
ROM

16 MHz

CLOCK

KEYBOARD

F
igure 13.1 T

he system
 block diagram

194

running together at the same rate. The RESET line allows all
hardware to be initialised to some predefined state after a reset.
An interrupt is a signal sent from a peripheral to the 6502
requesting the 6502 to look at that peripheral. Two forms of
interrupt are provided. One of these is the interrupt request (IRO)
which the 6502 can ignore under software control. The other in
the non-maskable interrupt (NMI) which can never be ignored.
Refer to chapter 7 on interrupts for more information.

When power is first applied to the system, a reset is generated by
the ULA to ensure that all devices start up in their reset states. The
6502 then starts to get instructions from the ROM. These
instructions tell the 6502 what it should do next. A variety of
different instructions exist on the 6502. The basic functions
available are reading or writing data to memory or an input!
output device and performing arithmetic and logical operations on
the data. Once the MOS (machine operating system) program is
entered, this piece of software gains full control of the system.

On an unexpanded Electron, the computer will continue operating
under the MOS until it is switched off. Programs are entered into
the memory from the keyboard or cassette port, then run. There is
some scope for clever programming techniques using the standard
hardware - they all involve some tampering with the various
registers in the ULA, However, a lot more facilities can be
provided by adding extra hardware onto the back of the Electron.

Since the Electron is the little brother of the BBC Micro, two
forms of expansion are provided for. The first of these covers the
addition of hardware which is supplied as standard on a BBC
Micro. Within this category are included items like a printer port,
analogue to digital converter (for joysticks) and paged ROMs.
The second category includes items which would have to be
added onto a BBC Micro. Products like the second processors and
units which plug onto the One Megahertz Bus are in this category.

195

10 ROM Routines
Many of the tasks which need to be performed when dealing with
the BASIC system are handled by standard routines inside the
BASIC ROM. There are standard routines for expression
evaluation, checking the syntax of lines, handling the memory
allocation, and arithmetic routines. Although some of these will
only be of use inside new statements and functions (like the ‘Get
character at PTRB’ routine); many can be used from simple
machine code programs, to allow floating point calculations to be
performed, or accessing the variables passed by the BASIC
‘CALL’ statement, perhaps.

Note that these ROM routines can only be used if BASIC is paged
in to &8000 to &BFFF. If the machine code program which uses
them will be called from BASIC, using either the ‘CALL’
statement or the ‘USR’ function, BASIC will be paged in. The
programs in chapters 7 to 9 rely on this. However, BASIC will not
be paged in if the program is called by using the ‘*RUN’
command in any filing system which itself sits in a paged ROM
(like DFS, for example): the filing system ROM will be paged in
instead.

To check that the current paged-in ROM is BASIC, the RAM
copy of the paged ROM select register (in location &F4) should
be compared with the ROM number of the BASIC ROM. This
can be found by using OSBYTE &BB (187). For example, this
section of code will check that the current ROM is BASIC:

LDA #&BB \Call OSBYTE &BB to read the ROM
LDY #&FF \ socket number containing BASIC.
LDX #&00 \ X and Y are set to read it without
JSR osbyte \ modification.
CPX &F4 \If it is not the same as the current
BNE giveup \ ROM, don't continue.

The BASIC ROM does not need to be paged in if the only part of
the machine code program which is to be ‘RUN’ is the
initialisation section, and that just needs to check the year of the
BASIC ROM (but uses no ROM routines). If this is the case, the
BASIC ROM slot number can be found using OSBYTE &BB as

162

above, and the year byte found by using OSRDRM (&FFB9). For
example, the following code will read the year byte of the BASIC
ROM:

LDA #&BB \Call OSBYTE &BB to read the ROM
LDY #&FF \ socket number containing BASIC.
LDX #&00 \ X and Y are set to read it without
JSR osbyte \ modification.
TXA \
TAY \Transfer the ROM number into Y,
LDA #&80 \ and call OSRDRM to read the byte
STA &E7 \ at location &8015 in the BASIC ROM
LDA #&15 \
STA &E6 \
JSR &FFB9 \

Note that OSRDRM was implemented for operating the ‘*ROM’
filing system in paged ROMs, so use it with caution (as with most
of the rest of the examples in this book!).

Throughout this section, I have used the names of many of the
standard BASIC registers, rather than the actual memory they
occupy. They are detailed in other parts of this book, but here is a
summary of them:

IntA This is the integer accumulator which is held in page zero
at &2A to &2D (LSB in &2A, MSB in &2D). It is used
in integer calculations, and also to pass integer values
between routines.

The low 3 bytes of IntA (&2A to &2C) are also used to
hold the variable descriptor block when handling
variables. When being used for this, &2A and &2B point
to the first byte of the variable value, and &2C contains
the variable type (for a description of the variable types,
see section 3.1.3). This variable desrcriptor block is
sometimes used at &37 to &39 (if IntA is used to hold the
value of the variable).

FPA This is the main floating point accumulator, which is held
in page zero at &2E to &35 (see section 2.2.2 for the
floating point accumulator format). It is used in
calculations involving real numbers (together with FPB),
and also to pass real values between routines.

163

PATIENCE
BENNY NOTARIANNI

Original program by Richard Still

GENERAL DESCRIPTION
The user plays a game of Patience on the screen. The object is
to place each suit in ascending order on its respective pile.

Instructions are displayed, then the main program is called (It
is not possible to look at the instructions again without rewinding
the tape?) The single pack is laid out in the form of a 'Harp'.
The cards may be moved from one column to another or new
cards. are dealt from the stack As soon as an Ace becomes
available, it may be used to start a file.

No false moves or cheating are allowed! Perhaps a 'Cheat'
facility could be added for desperate players?

DETAILED DESCRIPTION
Program 1 Introduction
Lines 10-190 the introductory program

170 resets PAGE to allow extra memory for disc users.
180 calls the actual game program
210-420 instructions
440-560 defines the pips and the back of the cards. (Thus
saving space in Program 2.)

 1 REM * INSTRUCTIONS/ INIT IALIZE PROGR
AM
 10 MODE7
 20 PROC_pchars
 30 PRINT CHR$141;CHR$130;SPC(10) ; "PAT
IENCE"
 40 PRINT CHR$141;CHR$131;SPC(10) ; "PAT
IENCE"
 50 PRINTSPC(14) ;CHR$134; "BY"
 60 PRINTSPC(7) ;CHR$133;CHR$136; "B . NO
TARIANNI"

10

 70 A=INKEY(300)
 80 VDU 30
 90 FOR X%=1 TO 9
 100 VDU 11
 110 A=INKEY(25)
 120 NEXT
 130 VDU 31,3 ,15
 140 PRINT" Do You want Ins t ruc t ions . "
 150 *FX15,1
 160 IF LEFT$(GET$,1)="Y" PROC_ins t ruc t
ions
 170 IF PAGE=&1900 THEN PAGE=&1100 : RE
M DISK USERS ONLY
 180 CHAIN"CARDS"
 190 END
 200
 210 DEF PROC_ins t ruc t ions
 220 CLS
 230 PRINT" Th is i s a computer ised vers
ion o f "
 240 PRINT" the game o f Pa t ience . "
 250 PRINT" Cards a re dea l t to a s tack
3 a t a "
 260 PRINT" t ime by p ress ing D. The p lay
er may"
 270 PRINT"move a card f rom the s tack t
o the"
 280 PRINT"co lumns by spec i fy ing S as t
he"
 290 PRINT"source and the co lumn number
 as"
 300 PRINT"des t ina t ion . "
 310 PRINT" Aces can be removed f rom th
e s tack"
 320 PRINT"or co lumns and p laced in the
i r own"
 330 PRINT"boxes by spec i fy ing P as the
 TO"
 340 PRINT"parameter . "
 350 PRINT" The game is won by p lac ing
a l l "

11

DON'T PAINT THE CAT

Seems a strange title for a program. I mean, who would
want to emulsion paint the family mogg anyway?

Well you see, the family have decided that you have to
paint the garden fence. You lost the draw - it might have
been your sister instead who had to do it, but never mind
there is always next time. Across the fence from you and
your fantastic paint brush, is your neighbour's transistor.
As a mental challenge you have decided to paint the
fence according to the high/low pitch of your neighbour's
music.

Look out for your cat, it's parked at the end of the fence.

33

How to play

As the game begins you will hear just two notes to
compare but, everytime you get the answer correct the
next tune will have an extra note.

You will be told which two notes to compare, and you
must key in H or L for High or Low.

If you get it wrong you must wait for the fence, and the
poor old pussy, to be painted.

If you take too long to answer, the cat will wind up getting
covered in paint anyway.

Press the RETURN key when you want a new tune.

Programming hints

If you can work out the answer long before the cat is
painted, then reduce the 50 if INKEY$(50) in line 540.

If you find that it is too difficult to tell the difference
between notes, then increase the 5 after the '*' sign in
line 470.

Alternateively you can increase the time allowed to
answer, or reduce the difference between the notes, by
doing the opposite of what is described above.

 10 REM DON'T PAINT THE CAT!
 20 REM COPYRIGHT (C) G.LUDINSKI 1983
 30 MODE 5
 40 DIM N(10)
 50 CLS
 60 VDU 19,0 ,4 ,0 ,0 ,0 ,19 ,2 ,2 ,0 ,0 ,0
 70 GOTO 170
 80 REM
 90 REM U.D.G. CALCULATOR
 100 REM
 110 DEF FNB(N$)

34

CHAPTER 2
A MODEL ADVENTURER

The Plan
The first stage in writing an adventure is the making of a plan with the
layout and labelling of the rooms with a system of numerical values for the
objects in each room along with the room number and name:

1

23

46 5

7 89

10

11

12

13

20

13

15

16

17

18

21

W E

S

N

Winding
Staircase
(TORCH)

Gunpowder
Chamber

(GRENADE)

Padded
Cell

(HEADPHONES)

Brightly
Coloured Room
(MAGNIFIER)

Wall
with Scratches

on it
(SCRATCHES)

Repairs
Room

(WIRE)
(AERIAL)

Prison
Cell

(DOOR)

Bell
Tower
(BELL)

Place
with a Rocky

Floor
(GLOVES)

Signal
Transmitter

Room
(TRANS—
MITTER)

Dimly Lit
Passage

Outside
of Ship

Lock-
Smiths

(KEY—CUTTER)
(SHINY—

KEY)

Muddy
Area

(MUD—MAN)

Room of
Chains

(ROUGH—
METAL)

Area With
a Hole in

the Ceiling
(HOLE)

Frozen
Room

(ICE—BLOCK)

Place
Besides a
Monolith

(INSCRIPTION)
(SWARCK)

Point
Observation

(WINDOW)

Air
Lock

(LOCKED—
DOOR)

(BOULDERS)

Altar
(SABRE)

4

5

As can be seen from the diagram, the names of the rooms are given along
with the room number for each room, and the objects associated with the
individual rooms are placed in brackets inside the room square.

Although the method for numbering rooms may at first appear not to be
logical, the rooms are in fact in a logical order. Room “I” is where the player
starts from, and room “2” is the first room that can be entered from this
room. Rooms “5” and “6” are to the right and left of room “4” — I give
preference in numbering to north then south then east and then west. I build
up the numbering system by looking for the room with the smallest
numerical value which has an exit, or exits, to an unnumbered room, or
rooms (numbering is done in the above priority). The above method works
because rooms beside each other have the lowest possible difference
between their numerical values — this is a key feature, especially in larger
adventures, in the movement between rooms, which is dealt with later in this
chapter.

If this seems a little confusing, then the step by step process for deciding
the numerical values for the rooms in the given example is as follows: the
only exit from room “1” is room “2”, and the only unnumbered room from
room “2” is room “3”. From room “3”, the only yet unnumbered room, is
room “4”. However, from room “4” there are two unnumbered rooms, the
eastern being numbered first as room “5”, and the western second as room
“6”. At this point, the lowest numbered room is room “5”, and the only room
off this room without a number is labelled room “7”. Room “6” is a dead
end, so no further rooms may be numbered from this room. Room “7” is
another room which has two unnumbered rooms off it, the eastern being
labelled room “8”, and the western, which is a dead end, is labelled room
“9”. From room eight, there are two rooms yet to be numbered — the
northern is designated room “l6”, and the southern, room “11”. The room
with the lowest numerical value here, with other rooms off it wanting
numbers, is room “1”, and rooms “12”, “13”, and “14” are to the north, east,
and west of it — rooms “12” and “13” are both dead ends. After dealing
with room “16”, the next room to be dealt with is room “11” : the rooms
south and east of this room are two more dead ends, and are numbered with
“15” and “l6” respectively. After this fairly complex branching, the only
room left that is not a dead end, with a yet unnumbered room off it, is room
“14”, and the room off this, is given the next number, which is “17”. Two
rooms requiring numbers are north and west of room “I 7”, and are labelled
with “18” and “19”, the latter being a dead end. Off room “18” is room “2fl”
to the east, and off room “2fj” to the north is the final room, room “21”.

WORKING OUT OF THE DISPLAY
1) Display of the Room Name — Type in the following lines into your
computer (if you own a computer other than the BBC Micro, then see
Chapter Four for conversion notes):

CREATIVE
ANIMATION AND
GRAPHICS ON THE

BBC MICRO

MIKE JAMES
D I G I T A L L Y R E M A S T E R E D E D I T I O N

Chapter Eight Transformations, Prototypes and Windows 125

The reason for the apparently redundant final 1 is difficult to explain
in detail but, put in simple terms, it is necessary to allow translations
to be included in the matrix formulation. (In fact the use of three
numbers to represent a point in two dimensions is a very useful
mathematical technique called homogeneous co-ordinates.)

The result of a transformation is another column vector obtained
by multiplying the original column vector by a 3 × 3 matrix. The
multiplication is such that the first element of the new column vector
is obtained by multiplying each element of the first row of the matrix
with the corresponding element of the column vector and adding the
results together. The second element of the new column vector is
obtained by performing the same operation using the second row of
the matrix and the third element is obtained using the third row. The
operation of forming each element of the new column vector is often
thought of as multiplying each row of the matrix by the column vector
(see Fig. 8.1).

r

r

r

v

v

v

1

2

3

1

2

3

=

a a a

a a a

a a a31 32 33

21 22 23

11 12 13

=r a v + a v + a v1 11 1 12 2 13 3

IS ROW 3 'TIMES' COLUMN3r
IS ROW 2 'TIMES' COLUMN2r
IS ROW 1 'TIMES' COLUMN1r

Fig 8 1. The method of matrix multiplication.

As a BASIC program this gives

FOR I=l TO 3
FOR J=1 TO 3
A(I)=T(I,J)*V(J)
NEXT J
NEXT I

126 Creative Animation and Graphics on the BBC Micro

assuming that the initial co-ordinates are stored in V, the result in A
and that the transformation matrix is T.

To convert a pair of co-ordinates into a column vector all that you
have to do is add the final 1. However, converting a column vector
back to a pair of co-ordinates is not always as simple as ignoring the
final 1. The reason for this is that during matrix multiplication it is
possible for the final I to be changed into some other value. In other
words the general form of a column vector is

 x
 y
 w

where w might not be 1. To convert this general form of column
vector into a pair of co-ordinates it is necessary first to divide each
element by w, giving

 x/w
 y/w
 1

The final pair of co-ordinates are then simply x/w and y/w.
Transformations that change the value of the final 1 are very
important in three-dimensional graphics, but in two-dimensional
graphics they can be avoided and the co-ordinates can be recovered
by simply throwing away the last element of the column vector.

Some transformations

So far all this talk of matrices is a little abstract and a few examples
are long overdue. The matrix R

 COS A -SIN A 0
 SIN A COS A 0

 0 0 1

produces an anti-clockwise rotation about the origin through an angle
A. That is, the point given by RV is the same distance from the origin
as the point V but moved through an angle A anti-clockwise. If every
point in the point file is multiplied by this matrix and then the lines in
the line file redrawn the resulting shape will be the same but rotated
through an angle A about the origin. Notice that to produce a rotation

PENGUIN ACORN COMPUTER LIBRARY

D I G I T A L L Y R E M A S T E R E D E D I T I O N

Jonathan Griffiths

How To Write Arcade Games
CREATIVE ASSEMBLER

for the BBC Microcomputer Model B
and Acorn Electron

5

59

ADDRESSING MODES

So far we have met two addressing modes. One of
these is absolute addressing as in

LDA addr

which, when executed, loads the accumulator with
the contents of the location whose address is 'addr'.
The other is immediate addressing as in

LDA #&81

which, when executed, loads the accumulator with
the actual value &81.

However, other addressing modes exist and one of
the most important, 'indexed addressing', is
introduced here prior to a summary exposition of all
the addressing modes available to the 6502 processor.

5.1 Indexed addressing
In this addressing mode one of the index registers (X
or Y) is added to the address as an offset which gives
the precise location for the stored data. For example,
we can write:

LDA addr, X

If X contains zero this instruction will behave just
like 'LDA addr'. However, if X contains 1 it will load
the accumulator with the contents of 'one location
further on from addr'. Since X can contain any value
from 0 to 255, the instruction 'LDA addr,X' gives you
access to 256 different memory locations. If you are
familiar with BASIC's byte vectors you can think of
'addr' as the base of a vector, and of X as containing
the subscript, e.g.

addr?7 = 12

is equivalent to

LDA #12
LDX #7
STA addr, X

5.2 String types
Two examples of the use of indexed addressing are
given below, both involving strings. There are two
string types available for use in BASIC and
assembler; ATOM strings and Microsoft strings. An
ATOM string is a string of characters terminated by a
RETURN character. The name which identifies the
string is preceded by a dollar ($) sign and the strings
can be easily set up in BASIC, e.g.

$name = "Fred"

ATOM strings must have an area of memory set
aside for them. This can be done, as in the examples,
by using a DIM statement. The characters making up
the string are then stored in the location identified by
the name of the string. This is very useful as the
address of each character is then also known.

A Microsoft string is a string of characters
preceded by a byte which gives the length of the
string. In this case, the name of the string has a dollar
($) sign after it. It is more flexible than the ATOM
string because it can contain RETURN characters. Its
disadvantage is that all the characters making up the
string are stored in locations chosen by BASIC, hence
the addresses of these are not known.

Example - print inverted-case string
The following program uses indexed addressing to

60

ADDRESSING MODES

print out a string of characters terminated by a
carriage return (which is represented in the memory
by &D), swapping case as it prints out each character.

61

 10 DIM string 256, code 100
 20 oswrch = &FFEE
 30 FOR pass = 0 TO 3 STEP 3
 40 P% = code
 50[OPT pass
 60.enter
 70 LDX #0 Set index to zero
 80.loop
 90 LDA string,X Get characters from string
100 CMP #&D Is it end of string ?
110 BEQ return If so, end
120 EOR #&20 Else invert case bit
130 JSR oswrch Print it
140 INX Increment index
150 BNE Loop If string Longer than 256
160.return
170 RTS then end anyway
180]
190 NEXT pass
200 END

Assemble the program by typing RUN, and then
try the program by entering:

$string = "Test String"
CALL enter

Example-- index subroutine
Another useful operation, easily performed in a
machine-code routine, is looking up a character in a
string and returning its position in that string. The
following subroutine reads in a character, using a call
to the OSRDCH read-character routine, and saves in
'? found' the position of the first occurrence of that
character in '$target'. This is exactly the same as the
BASIC '?found =INSTR("ABCDEFGH",GET$)'.

 0 REM Index Rooutine
 10 DIM target 25,P% 100
 20 osrdch=&FFE0 : $target="ABCDEFGH" : found = &70

ADDRESSING MODES

Creative Graphics
on the BBC Microcomputer

JOHN COWNIE

Mountains

This program draws a view of randomly-generated snow-
capped mountains as shown in the photograph above. The
colours are chosen at random, and although this can
produce some ridiculous effects, it can also produce
colour schemes that are reminiscent of the subtle hues
of an alpine landscape.

The largest most distant mountains are drawn first,
and then 'closer' mountains are put on top of these
obscuring them where they overlap. This technique for
eliminating hidden lines, by drawing from the back and
then over-plotting, is useful in many applications.
Although at first sight it may seem to be rather slow
and extravagant, the alternatives are considerably
more complicated and probably not much faster. The
method to use will obviously be governed by the nature
of the object being drawn, but the 'pasting on top'
approach, as used here, gives an easy solution for
irregular objects.

The technique relies on the ability to fill in areas
of colour rapidly. For line drawings a mask around the
foreground object is filled in black (or whatever the
background colour is) and then the object is drawn on
top of the mask.

When the entire picture is complete the program will
wait for any key to be pressed before starting again.

27

Each mountain is drawn as follows:

1 Choose a random point (X_PEAK%,Y_PEAK%) to be the
summit.

2 Choose two values X_SLOPE% and Y_SLOPE% to
determine the slope of the right-hand side of the
mountain.

3 Draw in steps down the mountain-side by adding
random x and y values, determined by the slope, to
the current position. The space below the line
drawn is filled in with the logical colour 2. If we
are still near the top of the mountain the area
below the edge down to the snow-line is filled with
logical colour 3.

4 The side is followed until it goes off the screen.

5 The method above is repeated for the left-hand
side.

6 The mountain is now complete.

MOUNTS

 0 REM Mountains
 20 MODE1
 30 VDU19,0,6;0;
 40 VDU5
 50 FOR MOUNTAIN%=900 TO 0 STEP -60
 60 X_PEAK%=RND(1200)
 70 Y_PEAK%=MOUNTAIN%+RND(50)
 80 FOR SIDE%=0TO1
 90 X_SLOPE%=RND(40)+20
 100 Y_SLOPE%=RND(20)+30
 110 MOVE X_PEAK%,Y_PEAK%
 120 X%=X_PEAK%:Y%=Y_PEAK%
 130 REPEAT
 140 IF SIDE%=0 THEN X1%=X%+RND(X_SLOPE%) ELSE
X1%=X%-RND(X_SLOPE%)
 150 Y1%=Y%-RND(Y_SLOPE%)
 160 SNOW_LINE%=Y_PEAK%-Y1%/5-50:GCOL0,2
 170 MOVEX1%,Y1%: PLOT85,X1%,0: MOVEX%,
0:PLOT85,X%,Y%
 180 IF SNOW_LINE%<Y1% THEN GCOL0,3:MOVEX1%,Y1%:
PLOT85,X1%,SNOW_LINE%:MOVEX%,SNOW_LINE%:PLOT85,X%,Y%
 190 X%=X1%:Y%=Y1%
 200 GCOL0,1:DRAWX%,Y%
 210 UNTIL POINT(X%,Y%)=-1
 220 NEXT SIDE%
 230 VDU19,RND(3),RND(8)-1;0;
 240 NEXT MOUNTAIN%
 250 A=GET:GOTO50

28

CHAPTER 2
Trigonometry

Scale drawings
Seldom can we directly measure the heights of tall buildings, hills, trees,
etc. One way to find the height of a building or tree is to stand away from
the object. Now measure the angle between the horizontal and the highest
point of the object (using a clinometer, which is just a glorified protractor),
then measure the distance between you can the object. By making a scale
drawing the height of the object can be readily estimated. See Figure 1.

Figure 1.

You couldn't use the same technique to measure the height of a
mountain peak which is miles away and covered in clouds. The clouds
would get in your way, and you couldn't measure the horizontal distance.
An instrument such as a tellinometer would help. This uses radar to locate
the top of the mountain. It also measures the angle and distance between
you and the top. A scale drawing would provide a way of calculating the
height of the mountain. See Figure 2.

As a further example suppose we wanted to find the width of a large
pond or lake; see Figure 3.

7

ANGLE

DISTANCE

TREE

Figure 2.

Figure 3.

A scale drawing could be produced from the measurements made, and
the required distance estimated.

Here is a related example. A navigator is at a certain position A. He is
150km due west of city B and 188 km from city C. The angle between the
two cities is 23 degrees measured from his position. How far apart are the
two cities? Again, a scale drawing could provide the answer.

Although scale drawings will provide answers to the problems
mentioned above, they are rough and ready. And they cannot always be
practicably or accurately reproduced. An alternative approach is to do the
necessary calculations by trigonometry using your computer.

Essential Maths on the BBC and Electron Computers

8

DIST
ANC

E

ANGLE

MOUNTAIN
WITH

CLOUDS

DISTANCE

ANGLE

DIS
TA
NC
E

LAKE

6845
videogen

6502
CPU

Address
bus

RAM

Mode 7
character
ROM
SAA5050

h/v syncR

bus
Address

Data
bus

G B

To rest of video circuits

Fig. 1.3. Simplified block diagram of video sections in mode 7.

The interfaces

This is in fact a heading under which to gather together a wide range of
different circuits! Some of these, such as the sound generator, the user
port and the A to D convertor, for example, are dealt with at length in
other chapters but it is worth producing a summary of all the interfaces
circuits inside a standard BBC Micro. One thing that all the interface
circuits have in common is that they use the 1K of address space not
used by the MOS ROM.

The interfacing circuits within a standard Model A BBC Micro
are:

1. Cassette and RS423 serial.
2. VIA(Versatile Interface Adaptor) - A. This is a parallel interface

looking after internal devices such as the keyboard and the sound
generator.

3. The 1 MHz extension bus.
4. The tube.

In the standard Model B machine we have to add:

5. VIA-B - a parallel interface that looks after two external ports, the
centronics printer and the user port.

6. An A to D convertor (a mPD7002) that can be used as a general
purpose measuring device or with joysticks.

There are other interface circuits that can be added to the BBC Micro
beyond even these six, such as the disc interface, but these are of less

6 The BBC Micro

general interest and will be discussed in Chapter Nine. We will now
take a look at each of the above interfaces, apart from the A to D
convertor which is dealt with in detail in Chapter Six and is so separate
that it adds little to our understanding of the overall machine.

The cassette and RS423 interface

Every BBC Micro comes equipped with a cassette interface. The
interface also doubles as a general purpose serial interface. It is true
that owners of the Model A cannot use this serial interface but this is
only because the two buffer chips that provide the power to drive the
serial output to the RS423 standard are missing. (The RS423 standard
is simply an improved version of the older and better known RS232 or
V24 standards. For our purpose it may be considered entirely
compatible with both.)

The cassette interface on the BBC Micro relies on two major
components. The first is a 6850 ACIA (AsynChronous Interface
Adaptor) which is responsible for changing data from a parallel to a
serial format and vice versa. This is all that is necessary for the RS423
interface (apart from the aforementioned buffering). However, the
cassette interface works by recording two audio tones corresponding to
the binary zeros and ones in the serial bit stream

DATA Address

Transmit clock

Receive Clock
Data

AddressReceive data

Transmit data

To RS423
buffer

CTS

RTS
Receive
data
Transmit
data

Serial
control

6850
ACIA

DCD

CTS

RTS

Fig. 1.4. Serial Interface set-up for RS423

7The Hardware

THOUGHT GAMES

7

HIGHER/LOWER
by R.Bailey

This program is based on the popular TV game, 'Play
your cards right', where you have to predict whether
the next card in a sequence will be higher or lower
than the previous one.

Instructions
You begin with a credit of 250 points, and a target of
2500. You can bet between 50 and your current credit
balance at each turn.

At the first, fourth and seventh card, you are
offered a choice of changing the card. If you reach
your target at the ninth card, you will begin a new
round with your credit added to your total score. If
your credit runs out or you don't reach the target,
you are offered a new game.

Programming techniques
The design on the reverse of the cards is generated
by PLOT commands in the procedure PROCdraw.
Only one user defined character (line 80) is used in
this game, and its purpose is to create a figure '10' as
a single character. This means that the number fits
neatly on the cards in the same way as the lower
single-digit numbers.

8

THOUGHT GAMES

 10 REM Higher / Lower
 20 REM by R.Bailey
 30 REM BEEBUG
 40 REM VERSION P 1.0
 50 :
 60 ON ERROR GOTO 1230
 70 X=RND(-TIME)
 80 VDU23,224,206,219,219,219,219,219,206,0
 90 MODE5:DIMA(12),B$(9),S(12):@%=&00000908
 100 BS=0
 110 VDU28,4,16,19,0:VDU19,128,4,0,0,0:VDU19,2,0,0
,0,0
 120 RT=0:CLS
 130 C=250:MB=50:AIM=2500
 140 F=0:PROCtitles:RESTORE:FORJ=1TO9:READX,Y:PROC
draw:NEXT
 150 PROCset:PROCpicture:RESTORE:F=1
 160 FORJ=1TO9:READX,Y:PROCdraw:PROCshow:IFJ=9THEN
200
 170 IFC<MB J=9:GOTO210
 180 IFJ=1ORJ=4ORJ=7THENPROCchange
 190 PROCbet:PROCupdate:PROChigherlower
 200 NEXT
 210 CLS:RT=RT+C:IFC>=AIM THEN330
 220 IFRT>BS THENBS=RT
 230 IFC<MB THEN310
 240 PRINTTAB(0,2)"You have failed"
 250 PRINTTAB(1,4)"to reach the"
 260 PRINTTAB(4,6)"TARGET"
 270 PROCbestscore
 280 PRINTTAB(0,8)"ANOTHER GAME?"
 290 PRINTTAB(4,10)"Y/N":A$=GET$
 300 IFA$="Y"THEN120ELSE CLG:PRINTTAB(0,10)"SEE YO
U SOON":TIME=0:REPEAT:UNTILTIME=200:MODE6:END
 310 PRINTTAB(0,2)"You have failed"
 320 PRINTTAB(2,4)"miserably":GOTO270
 330 PRINTTAB(0,9)"CONGRATULATIONS"
 340 FORS2%=1TO3
 350 FORS%=1TO12
 360 SOUND1,-15,(S%*4)+200,2

9

THOUGHT GAMES

3-D MAZE

In this program by Dave Kelsall, you are in a maze (whose dimensions you
determine) trying to get through it to the exit. At every turn you see the scene in
front of you, and you'll find it quite uncanny how 'solid' and 'real' the maze can
seem. If you're in trouble, the 'help option' will provide a bird's-eye view of the
maze.

When you first run the program, you'll be asked to enter the width of the maze
first, then the height. You can enter any integer between two and 12 for the
width, and between two and 10 for the height.

The program length is awesome, but we assure you the effort of entering all of
it will be amply repaid.

Here are a couple of sample mazes as generated by the program:

 3-D MAZE
Enter size of maze - Width 8
 Height 8
Thinking-Do you want to see a plan?Y/N
+__+__+__+__+__+__+__+ +
! ! ! ! ! ! ! ! !
+__+__+__+__+__+__+__+__+
! ! ! ! ! ! ! ! !
+__+__+__+__+__+__+__+__+
! ! ! ! ! ! ! ! !
+__+__+__+__+__+__+__+__+
! ! ! ! ! ! ! !
+__+__+__+__+ + +__+__+
! ! ! ! ! ! ! !
+__+__+__+__+ +__+ +__+
! ! ! ! ! ! !
+ +__+ + + + +__+__+
! ! ! ! ! ! ! !
+ + + + +__+ + + +
! ! ! !
+__+ +__+__+__+__+__+__+
Type L=Left R=Right F=Forward H=HELP!!

26

 3-D MAZE
Enter size of maze - Width 5
 Height 5
Thinking-Do you want to see a plan?Y/N
+ +__+__+__+__+
! ! ! ! ! !
+ +__+__+__+__+
! ! ! ! !
+__+ +__+__+__+
! ! ! ! !
+ +__+ +__+__+
! ! ! !
+ + + +__+ +
! ! ! ! !
+__+__+ +__+__+
Type L=Left R=Right F=Forward H=HELP!!
Press Space Bar to proceed

 10 REM 3-D MAZE
 20 REM By Dave Kelsall, St Albans
 30
 40 CLEAR:CLS
 50 ON ERROR RUN
 60 MODE 7
 70 M1=5
 80 A1=1:A2=2
 90 PRINT''''TAB(13);"3-D MAZE"'''
 100 REM**GET MAZE SIZE**
 110 INPUT "Enter size of maze - Width
"H
 120 INPUT TAB(21)"Height "V
 130 PRINT;"Thinking-";
 140 IF H>12 OR H<2 OR V>10 OR V<2 THEN
 PRINT"These dimensions are excessive!"'
:CLEAR:GOTO 110
 150 REM**DIM MAZE ARRAY**
 160 DIM W(H,V+2),V(H,V+2)
 170 Q=0:Z=0:X=RND(H)
 180 REM**SAVE MAZE ENTRY POINT**
 190 C=1:W(X,1)=C:V(0,0)=X:C=C+1
 200 R=X:S=1:GOTO 270
 210 REM**START TO BUILD MAZE**
 220 IF R<>H THEN 260

27

Chapter Two
Ant Hi l l

Ant Hill is a simple but effective program that involves the animation
of a number of objects. The basic idea of the game is to guide a man
through tunnels that belong to an ant colony with the aim of reaching
and destroying the nest of eggs located at the deepest point. The
difficulty of this task is increased by having to work within a time limit
and by having to avoid soldier ants positioned at each level of the
tunnels. Thee major problem in implementing a game of this sort lies in
animating a number of objects, the man and all the soldier ants, at the
same time. As well as dealing with this particular problem this chapter
also develops some of the standard methods that will be used without
further comment in subsequent chapters.

The game design

Before starting to write any program it is a good idea to try to specify,
in as much detail as possible, what it should do. Games programs are
slightly different from other applications in that it is usually not
possible to give an accurate outline of the final game before at least part
of it is implemented. The reason for this is that it is very difficult to
predict how elements of a game will work without trying them out.
Even after writing a large number of games programs it is still difficult
to predict the overall effect of combining different elements from
existing games to produce a new one. However, it is still worth working
out what you expect a game to do before you start writing any of it, for
the simple reason that it gives you time to get any major changes out of
your system!

The design of Ant Hill (and many other dynamic games) falls
nuturally into three parts:

1. the background graphics

2. the moving characters and the rules of movement
3. the consequences of winning and losing

Fig. 2.1.
The background of Ant Hill consists of a number of horizontal tunnels
connected by vertical shafts (see Fig. 2.1). The reason for using a
mixture of one and two shafts to connect the tunnels is that it promises
to give the game more variety of strategy. When only one shaft
connects two levels then there is only one route available and playing
the game becomes a matter of timing, but when there are two shafts the
player has the opportunity of choosing which one to go down. The
general layout of the background suggests that at least three colours are
going to be needed one for the tunnels, probably black, one for the
earth, probably red and one for the sky above, almost certainly blue.
This suggests that either a four- or a sixteen-colour mode needs to be
used. A choice of the sixteen-colour mode would, however, restrict us
to a horizontal resolution of only 20 printing columns and, as Ant Hill
is a game that depends on a great deal of horizontal movement, the
four-colour mode seems a better choice.

The Electron Gamesmaster

Fig. 2.2. Graphics character for man

The man shape is easily impelemented as a single user-defined
graphics character (see Fig. 2.2). Using a single character means that
the tunnels and the shafts that connect them only now have to be one
character wide. However, the ant shapes are much more difficult to
implement in a single eight by eight dot character because they are
fairly long and thin. The solution is to use two user-defined graphics
characters (see Fig. 2.3). The fact that the ants only move horizontally
along the tunnels, and never up or down the shafts, means that even
though they are composed of two characters the tunnels and shafts still
only need to be one character wide.

 Fig. 2.3. Graphics characters for ants

The rules of movement for the ants are easy to define. Each level
will have one ant confined to that level able to :move along the tunnel.
If an ant happens to arrive the current of the man character then the

11Ant Hill

Reading the Listings

Note that all programs in this book have been printed out using
the Program Lister program (see pages 18-25). The program
formats the listings so that they are easier to read than would
otherwise be the case.

One of the most useful features of the BBC Micro's red
function keys is to allow entry of teletext control codes and
user-defined graphic symbols. These are used by pressing one
of the keys at the same time as pressing either SHIFT or
CONTROL. The codes produced by these keys produce some
weird effects when printed out, so to avoid confusion, it is
generally not advisable to print these. The Program Lister
program gets round this by converting the codes into
unambiguous forms which can be easily printed and under-
stood. The actual output is a direct representation of the keys
which need to be pressed to produce the effect desired.

There is another common problem when entering program
listings from a book or magazine. It is often hard to tell how
many spaces are to be included within a string. The Program
Lister counts the spaces in the program for you, and if there are
more than two in a row, it outputs the number of spaces
required, rather than just printing a vast empty string. One or
two spaces are printed directly. The output from the program
we've mentioned is enclosed within square brackets, so you'll
know that anything within these brackets refers to information
produced by the Program Lister and must be entered with care.
Here's how to work out what they mean.

[fsn] means shift + function key 'n'
[fcn] means control + function key 'n'
[chn] means character with ASCII code n (see below)
[spcn] means n spaces

[chn]

15

Normally, these codes are not available from the keyboard, but
you can program any of them directly into one of the function
keys. For example, if the character with code 255 is required
(that is, the program refers to ch255) simply type:

> VDU 255

Then after the character appears enter:

> *KEY 0 'character here'

The 0 can be, of course, the key of your choice. (Once the
character has appeared, use the edit keys to 'bring it down' into
the quotes.)

OS 0.10

All the programs in this book were written on OS 1.20. Most
programs will work without modification, but programs with
user-defined graphics will need their character codes changed.
On OS 1.20, user-defined characters (before explosion) are
defined in the ASCII code range 128 - 159 inclusive, but in OS
0.10 they are in the range 224 - 255. Therefore, the codes will
need to have 96 added to them.

Also, you'll discover that using the function key in conjunc-
tion with SHIFT or CONTROL will not work, so the codes
will have to be copied into the keys using the method described
above, and the keys are unshifted. Some operating system calls
are not supported in OS 0.10, so we've avoided using these as
much as possible.

Three of the programs in this book (Mandala, Pontoon and
Play Your Cards Right) will not fit on the computer if you have
discs. To get them to fit, you need to disable the DFS. You do

16

this by entering:

*BUILD DWNLOAD
 1 *KEY 0 *TAPE|MFORA%=0TO(TOP-PAGE)ST
EP4:A%!&E00=A%!PAGE:NEXT:PAGE=&E00|MOLD|
MRUN|M
 2
Escape

The routine is now on your disc for you to use later on. Before
you try to load the long program, enter *EXEC DOWNLOAD
and then load your program. Press f0 and your program will
run as normal.

17

Graphic Art for the BBC Computer

produces (a tilted square, bottom leftish). Finally, try

PROC_RESTART : PROC_MOVETO(200,-300,0)
PROC_SQUARE(200)

to see how it is possible to use non-basic turtle commands. Try to let the
squares dance by using PROC_SQTURN.

In this routine I and A$ are local to the procedure: I is used as a loop
counter, and A$ is used as a means to produce early termination (the F key
is pressed). For up to 600 times the cursor (or turtle) moves forward a
distance I (without drawing), draws a square of side I, and then the turtle
turns through 30 degrees. The keyboard is checked by INKEY$(0) to see if
a key is pressed (saved in A$); if the key was an F, then ENDPROC else
the loop counter is incremented.

The routine is activated by

PROC_RESTART : PROC_SQTURN

and it runs remarkably quickly. If you want to slow it down, put a pause in
the INKEY$, eg INKEY$(20), but this does not slow down the drawing of
the squares — it just increases the time between squares (see UG page 276,
for INKEY$). This is a tediously predictable routine — it is the same every
time. The predictability is shown in Icon 1.1.

Note that Figures are not computer output, they may be diagrams or tables
which are there to assist in the understanding of the text. An Icon — which
is ‘an image, picture, or representation’ according to the dictionary — is an
exact copy of a display on the screen, it is a screen dump onto a printer.

Need a rest? Take Five.

An unsquare dance
I walk forward a certain, fixed, distance and turn through a certain,
changing, angle: what happens?
Solution: see PROC_INSPIRALI.

A$ is local again, tedious but safe, and the routine repeats until the F
key is pressed. The distance is kept constant (ie SIDE), but the angle
(ANG) is incremented (by INC) at each pass through the indefinite loop (ie
REPEAT. . .UNTIL. . .). This routine produces a vast array of
unpredictable results, which, once known, are completely predictable. It is
named PROC_ANSPIRALI because it is an INward SPIRAL, coded
Iteratively. Iteration means, as explained in the previous chapter, that the
control of the procedure is by a loop mechanism — in this case REPEAT. .
.UNTIL.

30

CHAPTER 1 Turtle Graphics

An outward SPIRAL is shown by PROC_OUTSPIRAL, in which the
angle remains constant and the distance increases, and is what we normally
mean by a spiral.Icons 1.2 and1.3 show two examples of outward spirals
for varying values of the fixed angle.

31

Graphic Art for the BBC Computer

An outward spiral — as the name spiral suggests — keeps on spiralling
outwards, but an inward spiral does nothing as common as that. Icons 1.4
to 1.7, are examples of four highly different shapes. Try to watch what
happens as the plotting unfolds: if it helps to slow down the process,
change the value of the parameter in the INKEY$.

32

 580 DY=SQR(ABS(DX*DX-R*R))
 590 DRAW X+DX,Y-DY
 600 NEXT DX
 610 ENDPROC

Fig. 2.14. Program to draw random size circles

Fig. 2.15. Display of random size circles produced by program of Fig. 2.14.

With this routine the number of calculations depends upon the size
of the circle, and it will be seen that the larger circles take a noticeable
time to draw. This is because the computer has quite a lot of
calculations to carry out. The square root function itself is rather slow
in BASIC. Things could be speeded up slightly by calculating R*R
outside the drawing loop and using the result in the calculation for DY.
This saves some multiplication operations but the overall calculation is
still quite slow. If we want to draw circles faster we will need to look
at other ways of calculating the points around the circle.

The rotation method

A different approach to the calculation of the X,Y values for a circle is
to base them upon the angle through which the radial line is rotated at
each step. In this case the new values for X and Y are calculated from
the previous values rahter than from the radius and the total angle.

BBC Micro Graphics and Sound

THA B

C

D

R

Fig. 2.16. Rotation of a point from X axis.
If we look at Fig. 2.16 the initial value of Y is zero, so that only the

original X value, which also happens to be equal to R, affects the
results. Here we get

 X1 = X * COS(TH)
 Y1 = X * S IN(TH)

Now consider the situation where the radial line is vertical and is
moved through angle theta. This is shown in Fig. 2.17. Here the initial
value of X is 0 and only the Y value affects the results. In this case the
value of Xl is negative since the X point has been shifted to the left of
the line where X=0. Here we get the results

C

B

D

TH

A
Fig. 2.17. Rotation of a point from the Y axis.

 X1 = -Y * S IN(TH)
 Y1 = Y * COS(TH)

If we combine these two results we can produce a general expression
for calculating Xl and Yl for any initial values of X and Y. The two
new equations are

 X1 = X * COS(TH) - Y * S IN(TH)
 Y1 = X * S IN(TH) + Y * COS(TH)

29Drawing and Plotting

Neil Cryer, Pat Cryer and Andrew Cryer

Pub
lish

ed
 in

as
so

cia
tio

n w
ith

 Listing 6.1

10 REM Display of SIN(X)/X

20 MODE4

25 VDU19,0,4;0;19,1,3;0;

30 point=69

40 VDU29,640;200; :REM Set origin

50 FOR X=-640.1 TO 640 STEP 2

60 PLOTpoint,X,800*32*SIN(X/32)/X

70 NEXT X

80 END

As you see, the program uses the point-plotting version of the
PLOT statement. Line 40 uses the following special version of
the VDU statement, which allows the origin for any future
graphics to be altered to X,Y:

VDU29,X;Y;

In the program this sets the origin for graphics to the point
640,200. This is because the function is symmetrical about X=0;
so we felt the program would be clearer if the values of X ran
from -640 to +640. The scaling takes place in line 60. The 800
enlarges the plot to fill most of the screen and the X/32 controls
the number of bumps on the curve. Such scaling is usually best
done by starting with an intelligent guess, displaying the resulting
plot and then adjusting the scaling.

6.2 Activities

This activity helps you to appreciate the importance of scaling on
the appearance of a display.

i. Enter the program of Listing 6.1 and run it.

75

Screen Display 6.2

ii. Try altering the overall size of the display scaling factor 800 in
line 60.

iii. Try altering the number of 'bumps' in the display by varying
the scaling factor 32 in line 60.

iv. In line 50 the value of X is purposely set to start at -640.1
rather than at -640 exactly. Investigate why, by altering to -640.

v. Try adding STEP 4 to line 50 in order to speed things up.

6.3 Drawing the surface

We now show how to use SIN(R)/R to produce the symmetrical
three dimensional ripple surface of Screen Dispiay 6.2. The
height of any point on the surface is dictated by the value of the
function at that point. There is a central, main 'bump' just as
there is for the two dimensional view of Screen Display 6.1.

76

 480 first=(first+1)MOD500
 490 ENDPROC

PROCfillfrom is initiated from a start point and that start point is
coloured and added to a queue (by calling PROCfilll.
PROCfillfrom then repeatedly takes the first point from the queue
and examines each of the neighbouring N, S, E and W points (by
calling PROCfill for each of these points in turn). Each time
PROCfill is called, it colours the point it is given (if it is not
already coloured) and adds that point to the end of the queue.
Adding a point to the queue in this way ensures that it will
subsequently be removed from the queue and its neighbours
examined.

The reason the queue is made a FIFO is to prevent it
becoming too large. If for example we made the queue an
ordinary stack (LIFO or last in first out), as you may see
suggested in computer graphics textbooks, it would gradually fill
up and would run out of memory.

For the queue, we use two arrays, one for x-coordinates and
one for y-coordinates. Two variables indicate the positions of the
'first' and 'last' items in the queue.

queue x

first

last

queue y

The arrays are treated as circular so that when the end of the
queue reaches reaches the end of the arrays, the queue is
'wrapped around' and continues into the space that is now free at
the start of the arrays.

79

queue x queue y

first

last

PROCfillfrom repeatedly takes the next point from the queue
until the queue is empty. The photograph shows the algorithm in
the course of filling. Note that the 'wavefronts' are diagonal. This
is a consequence of using a FIFO queue in this particular context.

An illustrative sequence of how the algorithm works in detail
is now given for a simple rectangular region. The start point is
the bottom left hand corner.

80

pixel 1 is filled and added to the queue

1st cycle of REPEAT loop in PROCfillfrom
pixel 1 is removed from queue and neighbouring points
examined

1 2 3 4 5

109876

11 12 13 14 15

2019181716

queue is now 6, 2
pixels 6 and 2 are filled

2nd cycle, pixel 6 removed and neighbours examined.

1 2 3 4 5

109876

11 12 13 14 15

2019181716

queue is now 2, 11, 7
pixels 11 and 7 are also filled.

3rd cycle, pixel 2 removed and neighbours examined.

1 2 3 4 5

109876

11 12 13 14 15

2019181716

queue is now 11, 7, 3
pixel 3 is filled

81

Addison-Wesley Software

GRAPHITO

BBC MICRO & ELECTRON
MANUAL

HALLAM

D I G I T A L L Y R E M A S T E R E D E D I T I O N

draws it on a net.

3) Type RUN and press RETURN

Program prelude
The prelude that is loaded with the module is:
1 MODE4 : H IMEM=HIMEM-1260-2340

2 PROCin i t ia l i sememory(4 ,TRUE,TRUE)

This can be altered to make best use of the computer's memory in the following
circumstances:
1 MODE4 : H IMEM=HIMEM-2340

2 PROCin i t ia l i sememory(4 ,FALSE,TRUE)

if you are not using motifs
1 MODE4 : H IMEM=HIMEM-1260

2 PROCin i t ia l i sememory(4 ,TRUE,FALSE)

if you are not using alphabets

Procedures
The following procedures are available

PROCalphaslice PROCnet
PROCcharnet PROCreflectx
PROCchardesign PROCreflecty
PROCdrawandscale PROCrestore_fore_col
PROCfore_to_back_col PROCrotate
PROChshear PROCsavescreen
PROChtext PROCscale
PROCinitialise PROCstretch
PROCload PROCvshear
PROCloadalpha PROCvtext
PROCloadscreen

Details of how to use each of these procedures are given later in the manual

Using 2DMOD3
There are exactly 17 ways in which an asymmetric motif can be arranged to form a two
dimensional network pattern. These are known as wallpaper groups.

18

Each can be generated in this system by generating a motif cluster using
DEFPROCnetmotif together with an appropriate call to PROCnet. The groups are
summarized below using an asymmetric triangle as a motif. Each group is given
together with a suggested recipe for PROCnetmotif. In each case adjustments in the x
and y parameters of PROCdrawandscaIe may be necessary to gain the correct
symmetry. Note that this method of using elementary motifs to make a motif cluster is
not the only to way to proceed. With group 1 7, for example, you could use the
generation scheme for group 1 provided you started with a motif that possessed the
appropriate rotational symmetry.

The motif 'cluster' generated by PROCnetmotif is boxed in each illustration.

Group 1
This is the basic network group and simply requires a motif to be placed at each point
on the net. The motif definition should be;

1000 DEFPROCnetmot i f (x ,y ,sca le)
1010 PROCload("MOTIF")
1020 PROCin i t ia l i se
1030 PROCdrawandsca le (.)
1040 ENDPROC

Group 2
This group involves a reflection about the x axis together with an appropriate
displacement.
1000 DEFPROCnetmot i f (x ,y ,sca le)

1010 PROCload("MOTIF")

1020 PROCin i t ia l i se

1030 PROCdrawandsca le (.)

1040 PROCref lec tx

1050 PROCdrawandsca le (.)

1060 ENDPROC

19

Group 3
The motif cluster in the group is formed by a 180° rotation.

1000 DEFPROCnetmot i f (x ,y ,sca le)

1010 PROCload("MOTIF")

1020 PROCin i t ia l i se

1030 PROCdrawandsca le (.)

1040 PROCrota te (180)

1050 PROCdrawandsca le (.)

1060 ENDPROC

Group 4
This motif cluster is formed from four motifs
1000 DEFPROCnetmot i f (x ,y ,sca le)

1010 PROCload("MOTIF")

1020 PROCin i t ia l i se

1030 PROCdrawandsca le (.)

1040 PROCrota te (180)

1050 PROCdrawandsca le (.)

1060 PROCin i t ia l i se

1070 PROCref lec ty

1080 PROCdrawandsca le (.)

1090 PROCrota te (-180)

1100 PROCdrawandsca le (.)

1110 ENDPROC

20

ROBERT D. HARDING

Graphs and Charts
on the BBC Microcomputer

Example Program

 10 REM L2-C2X1
 30 DIM £W(10,10)
 40 FOR I%=0 TO 10:FOR J%=0 TO 10
 50 X=(I%-5):Y=(J%-5)
 60 £W(I%,J%)=X^2+Y^2/2
 70 NEXT:NEXT
 80 REM now call PLOT£CN2D
 90 MODE5:PROC£CN2D(5,10,10,10)
 100 END

25

L2-C3 Complete Perspective Contour Map Plotter

PROC£CN3D(M,IM,JM,N) - Requires Ll-3D

This procedure works in the same way as L2-CN2D except
that the contours are drawn in perspective view
according to height.

The array £W(I,J) must be dimensioned and set exactly
as for L2-CN2D, then the call PR0C£CN3D(M,IM,JM,N)
will draw the contours.

Example Programs

 10 REM L2-C3X1
 30 DIM £W(10,10)
 40 FOR I%=0 TO 10:FOR J%=0 TO 10
 50 X=(I%-5):Y=(J%-5)
 60 £W(I%,J%)=X^2+Y^2/2
 70 NEXT:NEXT
 80 REM now call PROC£CN3D
 90 MODE5:PROC£CN3D(5,10,10,10)
 100 END

26

 200 REM L2-C3X2
 230 DIM £W(12,8)
 240 REM
 250 REM set w = cos(x).sin(y)
 260 FOR J=0 TO 8: B=SIN(J*PI/8)
 270 FOR I=0 TO 12
 280 £W(I,J)=B*COS(I*PI/6)
 290 NEXT
 300 NEXT
 310 REM
 320 REM now call PLOT£CN3D (12 contrs)
 330 MODE1:PROC£CN3D(1,12,8,12)
 340 END

27

The Procedures

PROCanimate

What it does: Displays an animated graphics character at any required
position on the screen.

Formal parameters: R, the number of times the animation sequence is
to be repeated.

X,Y, the TAB coordinates of the position on which the character is
to be displayed.

C, the ASCII code of the first of the pair of user-defined characters.

Local variables: J and T, the loop indices.

Actual parameters: repeats, tabx, taby, code.

Listing:

 10 MODE 4
 20 INPUT "Enter the code, 224 to 254
"code
 30 VDU 23,code,196,71 ,69 ,127,124,124,
72 ,108
 40 VDU 23, (code+1) ,101 ,71 ,66 ,127,124,
124,72 ,108
 50 INPUT "Enter the X coord ina te " tab
x
 60 INPUT "Enter the Y coord ina te " tab
y
 70 INPUT "Enter the number o f repeats

PROCanimate 17

 " repeats
 80 PROCanimate(repeats , tabx , taby ,code
)
 90 END
 100 REM ** *
 110 DEF PROCanimate(R,X,Y,C)
 120 CLS
 130 LOCAL J ,T
 140 FOR J=1 TO R
 150 PRINT TAB(X,Y)CHR$(C) ;
 160 FOR T=1 TO 1000:NEXT
 170 PRINT TAB(X,Y)CHR$(C+1) ;
 180 FOR T=1 TO 1000:NEXT
 190 NEXT
 200 ENDPROC

How it works: The procedure displays a pair of user-defined characters
alternately at the same location on the screen. This produces the
illusion of movement. The characters will have been defined previously
(in the calling program). The action of the procedure takes place in a
loop (lines 140 to 190) which is repeated R times. At each repetition,
the first of the two characters is displayed, followed by a pause (line
160). Then this character is replaced in the same position by the second
character. A second pause follows, and the loop is then repeated.

When the procedure ends, the second character is left on display.

Calling program: This procedure works in any graphics mode. Mode
4 is used for this demonstration. You are first asked to enter the ASCII
code for which you required the first of the two characters to be
defined. The second character will be defined for the code number
following this. Lines 30 and 40 then define two characters using VDU
23 statements. The characters given in this example program show a
dog turning its head and wagging its tail.

Next you are asked to enter the two TAB coordinates at which the
dog is to be displayed. X should be between 0 and 39, and Y shoujd be
between 0 and 3 I. Suitable values are 20 and IS which place the dog at
the centre of the screen. Line 80 calls the procedure, which clears the
screen and displays the dog in action.

At the end of the procedure, the second character is left on the
screen. In your own program you may want to remove it, either by
printing a space at the same TAB position, or by clearing the whole
screen. Or perhaps you may prefer to leave it there, motionless, ready

18 Handbook of Procedures and Functions for the BBC Micro

to be animated again at some later stage in the program.

Variations: There is no end to the variety of graphics designs that can
be used with this procedure. In any single program you could use to 15
different pairs of characters, displayed at different parts of the screen.

If you wish to make the character move faster or slower, alter the
1000s in lines 160 and 180 accordingly

Associated routines: PROCmoveacross, PROCmovedown.

PROCblankline

What is does: Clears the whole of the screen line that the cursor is on,
returning the cursor to the beginning of that line.

Formal parameters: None.

Local variables: X, the number of character per screen line in the
current mode.

Actual parameters: None.

Listing:

 10 CLS
 20 INPUT "TEXT " tex t$
 30 PROCblank l ine
 40 END
 50 REM ** *
 60 DEF PROCblank l ine
 70 LOCAL X
 80 X=(?&352+256*?&353) /?&34F
 90 VDU 13,11
 100 PRINT STRING$(X, " ")
 110 VDU 11,11
 120 ENDPROC

How it works: Line 80 findsX by reading two values from memory.
The first of these is the number of bytes needed for storing one screen
line. The second is the number of bytes needed for storing one
character. Dividing one value by the other givesX, the number of
characters in a screen line. Line 90 is a VDU statement which sends the

PENGUIN ACORN COMPUTER LIBRARY

D I G I T A L L Y R E M A S T E R E D E D I T I O N

Peter Killworth

How To Write
ADVENTURE GAMES
for the BBC Microcomputer Model B

and Acorn Electron

CREATING A ‘HACK-AND-
SLASH’ GAME: ‘CAVES´

2

2.1 The plot
In this part of the book we will investigate a simple
adventuring game in order to demonstrate how to
develop a database structure, handle commands, and so
on.

As a model we will look at the bones of a more
complex but truly excellent Adventure called Sorceror’s
Cave (the publishers are now Gibsons, and its writer is
Terence Donnelly).

The game presents a team of people (initially just one
man) involved in an exploration of a vast cave system,
which will change from game to game. You begin in an
entrance cave just underground, and may explore in any
one of six directions: north, east, south, west, up and
down (though not all areas have exits in each direction).
Exploration reveals a three-dimensional grid of caves and
passages, which should be mapped in order to avoid
getting lost.

In the caves lie treasures of various values, and
denizens. The latter are both ordinary people, like
yourself, and mythical creations such as giants, dragons,
and so on. Often the denizens are guarding treasure or
blocking a route you wish to take. You have the choice, as
you would in real life, of deciding to leave well alone (a

29

 CREATING A ‘HACK-AND-SLASH’ GAME: ‘CAVES´

good choice where dragons are concerned!), fighting
them (and gaming the advantage of surprise) or
approaching them to sec if they’re prepared to explore
with you (which will strengthen your party for later
encounters). In the latter case, the denizens’ leader will
determine whether he likes the look of you, doesn’t care
one way or the other, or wants to fight you (whereupon
the denizens get the advantage of surprise). Some
denizens are more friendly than others . . .

Fighting is carried out by the program, not by the
player, and involves a comparison (or weighing up) of
fighting strengths. Each character in the game has a
fighting strength; weak characters like hobbits have little
strength, whereas fearsomely strong characters like
dragons resemble a mobile army. The fighting strengths
of all denizens present are added together and pitted
against the fighting strengths of up to three of your party
(since caves are awkward places, not too many people
can muscle in on the fight!). There is a bonus of one for
whichever side has the surprise advantage. To each of
these numbers is added a random dice throw (i.e. a
number between one and six). The team with the highest
number kills one of the other side. In the event of a draw,
you are deemed to be still fighting. This gives you the
chance of running for an exit, or continuing to fight.

Only if you kill all the denizens, or if they join your
party, can you pick up the treasure in then area. There are
more treasures (and more denizens!) in the lower levels
of the caves; thus the surface levels are safer if less
rewarding.

Each area is either a cave with something inside it, or
an empty passage. The type of area, its exits, and contents
if any, are determined randomly the first time the player
attempts to enter. Thus the player may be in a passage
with a north exit but be unable to use it because the area
to the north doesn’t have a southern entrance.

Finding and using an ‘up’ staircase on a level of the
caves just underground will take you out of the caves,
and finish the game. Things are seldom that sample
because caves and passages get blocked easily, and there
are two further random events which can ruin your
plans. One is an earthquake, which will destroy the area
you were just in, and render it impassable. The other, a

30

 CREATING A ‘HACK-AND-SLASH’ GAME: ‘CAVES´

trap, is a precipitous drop one level deeper into the cave
system. In either of these cases, there is no possibility of
retreat should you encounter any denizens.

That’s roughly the plot. In the original, access to the
next cave or passage was determined by revealing a card
with a representation of a cave and some exits drawn on
it, followed by a number of cards representing Ms
contents. In our implementation, this will be replaced by
random selection within the computer. However, there
will have to be a fair amount of book keeping so that the
player may backtrack and rediscover caves (and where
appropriate, contents) that have already been mapped.

2.2 Planning the game – the game logic
Having decided on the plot of the game, the next thing is
to organise its logical flow, turn by turn. I strongly
recommend doing this in English, or a quasi-English
most programmers know as ‘pseudo-code’. What we we
do us write the program in readable English, but in terms
that are converted, with relative ease, to BBC BASIC.

Since BBC BASIC is highly structured, and we aren’t
going to be short of room for this program, we can set up
a very structured program; please bear this in mind as we
proceed.

First of all, when writing pseudo-code,

GET THE LOGICAL STRUCTURE FIRST

then figure out later how to program it. Only if the
programming is clearly beyond your abilities should you
redesign the structure!

We’ll assume that outside the main program loop
there will be some initialisation, dimensioning, screen
mode choosing, etc., and concentrate now on the
recurring logic. As he takes a turn, the player may be in a
normal, ‘what shall I do now?’ situation, or he may be
‘still fighting’ from a previous turn. Obviously the latter
will take precedence over the former. So we begin our
pseudo-code with:

IF PLAYER IS FIGHTING, MAKE THE AREA
UNSAFE, SET FIGHT BONUS TO ZERO, AND ASK
PLAYER IF HE WISHES TO CONTINUE TO FIGHT OR
TO LEAVE. IF CONTINUING, FIGHT AND GO TO END

31

CHAPTER 6

Character Graphics

In this chapter we will be taking a look at one of the most
important parts of programming games: Graphics characters. We
have already used many of these without bothering to worry
about how they are made up or how they work. Let's take a look
at one of the routines that sets up a graphics character. For
example, look at the routines that define aliens. As you can see,
they are all very similar, in fact the only differences are in the
lines starting with REM and the line starting with VDU . The line
starting with REM, if you remember, just means REMark or
REMinder, so after REM you can write anything you like and the
program will ignore this statement - it's just there to help us
humans understand the program.

Next we'll deal with the VDU lines. You may have noticed that
there are always eight numbers in each VDU statement which are
separated by a space from the first two. This has just been done so
that we can see where the last eight numbers start because it is
these numbers which define our character. The first number in
the statement is 23, and this lets the computer know we want to
redefine a character. The second number is the code of the
character which we wish to redefine, and then we come to those
eight pieces of data. Why eight? Well, it's all to do with the way in
which our little characters are made up. They are drawn on an
eight by eight grid of squares. We have to draw our character on a
grid like this, and remember, you can only use whole squares, not
parts - it's all or nothing.

1
2

8
6

4
3

2
1

6
8 4 2 1 1

2
8

6
4

3
2

1
6

8 4 2 1

24
60
90
36
24
36
66
129

123

Above is a blank grid and next to it we've drawn a new alien so
that you can see how to turn him into a set of numbers. If you
look again, you can see the row of numbers across the top of the
grid. Each square in the grid has a value, and that is given by the
number above it, so to get the number for each line, you start at
one end, and if the square is blank you move to the next, and if
the square is blacked in you add it to your total. The first line is
hence:

16 + 8 = 24

and the rest of the lines are as follows:

32 + 16 + 8 + 4 = 60
64 + 16 + 8 + 2 = 90
32 + 4 = 36
16 + 8 = 24
32 + 4 = 36
64 + 2 = 66
128 + 1 = 129

This is just like binary arithmetic, which isn't too surprising.
Binary is a number system based on zeroes and ones and it is the
only number system that your micro-computer understands
directly. It appears to understand decimal numbers but that is
only because there is a program inside your micro-computer that
converts everything - even the words - into binary numbers.

Now you know enough to be able to design your own graphics
characters, so you can have different aliens or players. You can
even design new shapes for use in the background. What we really
need to know, though, is how the routine actually works. So let's
go back over the program in greater detail.

The REM statement we have already dealt with, and we know
that REM is short for REMinder or REMark.

The VDU statement contains a list of numbers which are the
decimal equivalent of the pattern of binary numbers. Binary
arithmetic is used beacuse it is easy for a computer processor to
recognise one of two states, on or off, making it possible to
represent only the two numbers, 1 and 0. Memory is divided into
bytes - there are a maximum of 65536 of these in your computer

124

and each byte is further subdivided into 8 bits. Each bit (short for
binary digit) can have the values 0 or 1 and as you move along
the byte twoards the left, each bit is worth double that of the one
before it - hence the sequence of numbers at the top of our
graphics grid:

128,64,32,16,8,4,2,1

If each bit was set to 1, the number held in that byte would be
255 decimal, which is represented by 11111111 in binary. These
bits are copied from memory in a special area (at address &C00)
and stored there for future reference. When you PRINT a
character the data is copoied to the appropriate screen position
and a point of light appears where each 1 bit is and a dark point
where each 0 bit is. This means that when you PRINT out your
character now you will get a little monster or whatever shape you
designed.

Following this text is a utility program (a utility program is
one that helps you to design and ceate other programs) to help
you make up your own characters and change them around
without using yards and yards of paper and wearing out lots of
pencils. (After all, what's a computer for if not to make life
easier?) The instructions for using it are as follows:

Your position in the grid is shown by an asterisk. To move it
around, use the cursor keys (the arrow keys).

When you reach a square you want to change - either from
black to white or white to black - press C and it will change.

After you are satisfied with the design, press S and the
program will ask you in which character you wish to save your
design. If you wished your design to replace character 128 then
you would simply enter 128 followed by RETURN, and the
character at the top of the screen would be replaced by your new
character and you would be able to see what it looked like at
proper size.

This is a longish program so be careful when you key it in.

125

Pan

P E R S O N A L

COMPUTER LIBRARYNEWS

‘The complete
programmer’s toolkit –
essential programming

aids for your micro’

JEFF AUGHTON

DIGITALLY REMASTERED EDITION

Utility 4:

Disassembler

Description
One of the best features of the Electron is the built-in Assembler. This
makes it possible to write (source) code using 6502 mnemonics and
symbolic labels which are then translated into machine (object) code
by the Assembler. A disassembler performs the reverse process and is
absolutely essential for anyone writing – or even merely interested in –
machine code.

The output from this disassembler is similar to that of the Assembler
except that:

i) labels are not given

ii) ASCII equivalents are supplied

iii) branch instructions are provided with a direction and the absolute
destination address

During disassembly, any invalid op-codes are assumed to be single
byte instructions and are replaced by '???'

As it can be difficult to follow disassembled code on the screen, you
are given the option of sending output to the printer when you first
run the utility.

At this point you may feel inclined to turn to another section on the
grounds that you are not yet au fait with machine code. If not, why
not?? You have the idea! machine on which to learn and there are
now numerous books and articles on the subject. The Electron has
been well designed to make machine code programming as painless
as possible and it is well worth making an effort to learn. Throughout
the book I assume that you are prepared to have a go at
understanding the assembler routines even though you may prefer to
be reading BASIC.

If you are still somewhat apprehensive about machine code a good
place to start is to type in this disassembler and use it to look at how
other people write programs. There are many machine code programs
available for the Electron and you can learn a great deal just by
studying them with the disassembler. In addition, several of our
utilities are written in machine code, although you do not need to be
familiar with machine code to get them to work or to understand the
principles underlying their operation.

Use
Normally it is best to LOAD the disassembler at the usual value of PAGE

and then set PAGE=PAGE+&C00 so that programs may be LOADed and
RUN without affecting it. To use the utility, reset PAGE to the correct
value and then RUN. Select 'N' in response to the question
'Disassemble to printer?', and enter the address (in hex) at which
disassembly is to commence. For starters, try an address somewhere in
BASIC, i.e. between &8000 and &BFFF – you will then see how the
experts write machine code. If the result of this is a Whole mass of
???'s (invalid op-codes) it is because you have landed in the middle of
a data table rather than executable code. BASIC contains several such
tables, so try a different address if you find one.

Pressing key 'A' will generate one line of output and if you hold it
down lines are produced at the rate of about three per second. If you
press ESCAPE, you are returned to the question 'Start address?' so that
you may continue disassembly from a different point. To exit the
program, you should press ESCAPE in response to this question.

This approach will not be so successful if the program you want to
disassemble has to be LOADed in at PAGE for correct operation (as might
be the case for, say, a video game). Any absolute addresses within the
program would be displaced by an amount: (actual LOAD address –
true LOAD address), making the code very difficult to follow. The
simple solution to this is to Low the disassembler in a different place –
for example, near the top of memory to make room for the intended
disassemblee (if I may coin a word). Before doing so you should
switch to MODE 6 and reserve at least 12 pages (&C00 bytes) for the
routine.

Alternatively, the disassembler can be modified to include an offset
facility so that it can stay where it is and pretend that the code it is
disassembling is actually located somewhere else. We will look at the
offset facility in the Extensions section below.

 10 REM DISASSEMBLER
 20 MODE 6 :@%=1
 30 VDU 19,1 ,3 ,0 ,0 ,0
 40 INPUT "D isassemble to p r in te r (Y /N
) " ,A$
 50 IF A$="Y" vdu%=2 ELSE vdu%=15
 60 ON ERROR GOTO 890
 70 VDU 3 ,28 ,0 ,1 ,39 ,0 ,12
 80 INPUT "Star t address : &"A$
 90 pc%=EVAL("&"+A$) :s ta r t%=pc%
 100 ON ERROR GOTO 920
 110 VDU 28,0 ,24 ,39 ,2 ,12 ,vdu%

30 Utility 4

 120 REPEAT
 130 IF vdu%=2 OR INKEY(0)=13 PROCl ine
 140 UNTIL FALSE
 150
 160 REM ONE S/R PER ADDRESSING MODE
 170
 180 RETURN : REM SOME SUBROUTINE! ! !
 190 PRINT "A" ; :RETURN
 200 PRINT "#" ;pc%?1; :RETURN
 210 GOSUB 230:PRINT " ,X" ; :RETURN
 220 GOSUB 230:PRINT " ,Y" ; :RETURN
 230 PRINT "&" ; :PROChex(pc%?1) :RETURN
 240 d%=pc%?1: to%=pc%+2+d%:X$="+"
 250 IF d%>127 to%=to%-256:X$=" - " :d%=25
6-d%
 260 PRINT X$;d%;" (" ;
 270 GOSUB 340:PRINT ") " ; :RETURN
 280 PRINT " (&" ; :PROChex(pc%?1) :PRINT "
,X) " ; :RETURN
 290 PRINT " (&" ; :PROChex(pc%?1) :PRINT "
) ,Y" ; :RETURN
 300 GOSUB 330:PRINT " ,X" ; :RETURN
 310 GOSUB 330:PRINT " ,Y" ; :RETURN
 320 PRINT " (" ; :GOSUB 330:PRINT ") " ; :RE
TURN
 330 to%=(pc%?1)+256* (pc%?2)
 340 PRINT "&" ; :PROChex(to% DIV 256) :PR
OChex(to% MOD 256) :RETURN
 350
 360 DEFPROCl ine
 370 pc%=pc% AND &FFFF
 380 PRINT " " ;
 390 PROChex(pc% DIV 256)
 400 PROChex(pc% MOD 256)
 410 PRINT " " ;
 420 by te%=?pc%
 430 IF (by te% AND 3)=3 by te%=3
 440 RESTORE
 450 FOR I%=0 TO by te%-(by te% DIV 4) :RE
AD code$:NEXT
 460 am%=ASC(code$) -96
 470 mn$=RIGHT$(code$,3)
 480 asc$=" "
 490 ex%=-(am%>2) - (am%>9)
 500 FOR I%=0 TO ex%
 510 asc%=pc%?I%
 520 PRINT " " ;
 530 PROChex(asc%)

31Utility 4

Chapter Four
Program Formatters

BASIC's LISTO command allows a limited amount of control in
producing formatted listings, inserting spaces to indent loops and
structures as required. The two programs presented in this chapter
provide an extended formatting option for either BASIC or assembler
programs; indeed, the Assembler Formatter was used to produce the
clear listing within this book, inserting ten spaces between line number
and mnemonic but leaving labels un-indented and clearly separated from
the listing.

 10 REM * A Bas ic Format ted L is t ing *
 20 FOR loop=0 TO 100
 30 PRINT loop : NEXT loop
 40 INPUT "A number" N%
 50 IF N%=10 PRINT"Cor rec t " ELSE PRINT
"wrong"
 60 REPEAT : INPUT "Code" C$
 70 FOR wa i t=0 TO 1000 : NEXT wa i t
 80 UNTIL C$="END"

>LIST

 10 REM * A Bas ic Format ted L is t ing *
 20 FOR loop=0 TO 100
 30 PRINT loop
 : NEXT loop
 40 INPUT "A number" N%
 50 IF N%=10 PRINT"Cor rec t "
 ELSE PRINT "wrong"
 60 REPEAT
 : INPUT "Code" C$
 70 FOR wa i t=0 TO 1000
 : NEXT wa i t
 80 UNTIL C$="END"

Fig. 4.1. A BASIC listing with and without the BASIC formatter

The BASIC formatter splits multistatement lines by issuing a carriage
return each time it encounters a colon. It also splits IF. .
.THEN. . .ELSE structures in addition to indenting them along with

REPEAT . . . UNTIL and FOR. . .NEXT loops. Figure 4. 1 shows the
type of listing the BASIC Formatter is capable of. Now for the
programs!

The BASIC Formatter (Program 4.1)

The basic_format procedure assembles its machine code into Page 9
of block zero RAM. This area has a number of uses (in addition to
housing our machine code) and is more normally associated with
ENVELOPEs 5-16, the speech buffer, cassette and RS 423 buffer. The
routine has two entry points - &900 and &928 in this case - and function
keys I and 2 have been programmed to call these locations. These two
entries simply turn the formatter on and off respectively.

The 'on' entry point (line 1485) first prints the formatter on message
before storing the current value of LISTO, found at &1F, in a byte above
the program. Its maximum value of 7 is then inserted. The WRCHV
vector contents are extracted and saved and the WRCHV pointed to the
*format' entry point at line 1521. The 'off' entry, line 1506, simply
reverses these procedures. Line 1518 could be changed if required to
make the formatter clear the LISTO option each time it is switched off
by replacing it with

LDA #0

 10 REM ** * L ISTING FORMATTER ** *
 20 PROCbas ic_ fo rmat (&900)
 30 *KEY0 CALL &900|M
 40 *KEY1 CALL &928|M
 50 END
 60 :
1480 DEF PROCbas ic_ fo rmat (addr)
1481 in te rp re te r=&E0A4
1482 FOR pass=0 TO 3 STEP3
1483 P%=addr
1484 [OPT pass
1485 .on
1486 LDX #&00
1487 .nex t_charac te r
1488 LDA message,X
1489 JSR &FFE3
1490 INX
1491 CMP#13
1492 BNE nex t_charac te r
1493 LDA &1F

33Program Formatters

1494 STA l i s to
1495 LDX #&07
1496 STX &1F
1497 LDA &20E
1498 STA address
1499 LDA &20F
1500 STA address+1
1501 LDA # fo rmat MOD 256
1502 STA &20E
1503 LDA # fo rmat DIV 256
1504 STA &20F
1505 RTS
1506 .o f f
1507 LDX #&00
1508 .nex t_charac te r
1509 LDA message2,X
1510 JSR &FFE3
1511 INX
1512 CMP #13
1513 BNE nex t_charac te r
1514 LDA address
1515 STA &20E
1516 LDA address+1
1517 STA &20F
1518 LDA l i s to
1519 STA &1F
1520 RTS
1521 . fo rmat
1522 PHA
1523 CMP #ASC(" : ")
1524 BNE no_co lon
1525 JSR ou tpu t
1526 LDA #&00
1527 STA by te
1528 STA by te+1
1529 BEQ not_e lse
1530 .no_co lon
1531 LDA #&01
1532 CMP &1E
1533 BNE no t_same
1534 LDA #&00
1535 STA by te+2
1536 STA by te+3
1537 STA by te+4
1538 .no t_same
1539 CPY #&00
1540 BEQ car ry_on
1541 .no t_e lse
1542 PLA
1543 JMP in te rp re te r
1544 .car ry_on
1545 LDA &37
1546 CMP #&E7

34 The BBC Micro Machine Code Portfolio

CHAPTER 5
The ENVELOPE Command

The ENVELOPE command is arguably one of the most difficult
commands to master in BBC BASIC. Part of the problem lies in the fact
that it must be followed by 14 parameters and used in conjunction with the
SOUND command. This alone gives us a myriad of possibilities to choose
from and the chances of getting things wrong are considerable.

The advantages of knowing what to do when searching for an effect, as
opposed to resorting to a trial and effort method, cannot be
overemphasised - unless you have a lot of time on your hands; and when
does time pass more quickly than when you're programming your
computer?

Chapter 7 explores the trial and effort method and how to get the most
out of it - with the minimum of effort. This chapter explores the systematic
method, one you will find infinitely rewarding once you are able to think
of a sound and know immediately how to produce it.

The ENVELOPE command has two separate functions. The first is to
control the amplitude of the sound and the second is to modulate the pitch.
When a SOUND command is controlled by an envelope, amplitude control
is automatically passed to the envelope. In order to produce a sound, the
envelope must be configured to do so. Control over pitch is optional and
can safely be ignored when experimenting with the amplitude parameters.
The Hawaiian Guitar program in Chapter 3 demonstrates pitch control.

The complete ENVELOPE command
Using the notation on page 245 of the User Guide, the ENVELOPE
command is followed by 14 parameters and described as follows:

ENVELOPE N,T,PI1,PI2, PI3,PN1,PN2,PN3,AA,AD,AS,
AR,ALA,ALD

The parameter names could have been slightly better chosen but, as these
are in common use and many people will be used to thinking in these
terms, there is little point in adding further complexities to the situation by
introducing new ones. I think of the parameters in these terms:

49

Making Music on the BBC Computer

Number of envelope
Time of each step

PItch 1
PItch 2
PItch 3

Pitch Number of steps 1
Pitch Number of steps 2
Pitch Number of steps 3

Amplitude change during Attack
Amplitude change during Decay
Amplitude change during Sustain
Amplitude change during Release

Amplitude Level for Attack phase
Amplitude Level for Decay phase

They may help, or you may have your own mnemonics. The parameters,
their ranges and functions are fisted in Figure 5.1 for easy reference.

Exploration of the two aspects of envelope control will be much easier
if they are considered separately and, if the six pitch parameters are set to
0, we can observe the effects of altering the amplitude section.

First, we will see how the loudness contour of a sound can be broken
down into sections.

ADSR: the amplitude envelope
ADSR or Attack, Decay, Sustain and Release, has been mentioned in
previous chapters in relation to the way in which the volume of a note
varies during production. Although the ADSR principle is most commonly
used to describe instrument characteristics, the favourite example used to
explain it is that of a car approaching us along a straight road. We hear it
very quietly at first and it gradually becomes louder until it draws level
with us at which point it is as loud as it is going to get. The volume then
immediately begins to decrease. If it stops a little further on for the driver
to ask directions, the engine volume will remain constant. When it drives
off again the volume will gradually fade to nothing. If we plot the volume
against time, the resulting graph might well look like Figure 5.2.

This example is obviously very coarse and long (in terms of time), but
the principle behind the volume variations involved are exactly the same as
those which occur when an instrument produces a note. The note envelope,
however, will usually be over in one or two seconds, often less.

50

CHAPTER 5 The ENVELOPE Command

Figure 5.1

PARA-
METER

RANGE FUNCTION

N 1 to 16 Envelope Number

T Length of each step in
hundredths of a second.

1 to 127 Pitch envelope auto repeats.

129 to 255 Pitch envelope does not repeat.
T assumes a value mod 128.

PI1 -128 to 127 Change of pitch per step in first
section.

PI2 -128 to 127 Change of pitch per step in
second section.

PI3 -128 to 127 Change of pitch per step in
third section.

PN1 0 to 255 Number of steps in first section.

PN2 0 to 255 Number of steps in second
section.

PN3 0 to 255 Number of steps in third
section.

AA -127 to 127 Change in amplitude per step
during attack phase (heading
towards ALA).

AD -127 to 127 Change in amplitude per step
during decay phase (heading
towards ALD).

AS -127 to 0 Change in amplitude per step
during sustain phase (heading
towards 0).

AR -127 to 0 Change in amplitude per step
during release phase (heading
towards 0).

ALA 0 to 126 Target amplitude level AA is
aiming for.

ALD 0 to 126 Target amplitude level AD is
aiming for.

A
M

P
LI

T
U

D
E

 E
N

V
E

LO
P

E
 P

A
R

A
M

E
T

E
R

S

P
IT

C
H

 E
N

V
E

LO
P

E
 P

A
R

A
M

E
T

E
R

S

51

CHAPTER TEN

SPRITE GRAPHICS

Most arcade games feature a series of animated
characters which movearound the screen. One or
more of the characters are controlled by the player.
On the BBC Micro, the only help the operating
system gives to anyone trying to produce such
graphics is the provision of theu ser-definable
character set. Using VDU23 it is easy to produce
eight-by-eight pixel shapes which can be moved
around the screen.

However, this system has its limitations. Firstly,
the shape producedcan only be in two colours,
background and foreground; secondly, eight-by-
eight is too small for most purposes; and thirdly, this
method is far too slow for a fast action-packed
arcade game.

The first and second problems can be solved by
combining more than onecharacter to make up an
object, but this makes the animation even slower.It
is slow because time is taken up by the characters
having to be converted from the eight-byte format of
the user-defined character to theform in which they
are actually stored in the screen memory. Worse
still,the way a character is stored varies between
the different screen modes.

However, as most games will only use one
graphics mode, it should bepossible to code the
character into the relevant format for thatparticular
moe when writing the program. This ready-defined
characterwould be able to contain all the colours
available in the mode and couldbe any size. This
shape could then be stored directly on the screen in
afraction of the time taken by the operating system
to do the same job. These predefined characters are
called SPRITES. As most arcade games workin

216

Mode 2, I am going to show how to use a complete
sprite system from machine code in this mode.

Remember that the methods about to be detailed
will not work across the Tube.

Before we embark on a complex machine code
routine, we should try an experiment in BASIC −
this, as we have seen, is always a good idea when
writing machine code routines.

A sample sprite

A BASIC sprite routine We are going to use the sprite shown above as an
example. The codng forits storage as a Mode 2
sprite is shown. Because of the way in which the

217

&30 &20 &10 &30

&30 &20 &10 &30

&00 &20 &10 &00

&00 &21 &12 &00

&01 &03 &03 &02

&03 &03 &03 &03

&03 &03 &03 &03

&17 &21 &12 &2B

&17 &21 &12 &2B

&17 &21 &17 &2B

&03 &03 &03 &03

&01 &03 &03 &02

&00 &09 &06 &00

&00 &0C &0C &00

&04 &08 &04 &08

&0C &00 &00 &0C

Black

Red

Green

Blue

White

screen is laid out this coding will only work if the
sprite starts on thefirst pixel of a screen memory
byte. That is, the furthest left pixel ofthe sprite must
be on an even-numbered pixel horizontally. If we
wanted toplace it a single pixel to the right or left,
we would have to totally re-code it.

However, we can easily move the sprite left and
right two pixels at atime; that way, we are moving it
one byte at a time. If we made the spritemove this
distance every fiftieth of a second (which is the rate
at whichthe image on a TV or monitor is updated),
the image would appear to bemoving smoothly.

However, if we wanted the sprite to move slower
than that, we wouldeither have to put up with
noticing that the sprite jumps two pixels at atime, or
we would have to define two sprites, one in each
position, andalternate between them. This is com-
mon practice in arcade games and veryoften the
two sprites are slightly different. For example, it is
quiteeffective to use two sprites of a man with his
legs in differentpositions. This will make him appear
to walk when the sprites are placedalternatey on the
screen.

For movement up and down, we need to place
the bytes from the shapetable into the screen
memory in different positions. As we shall see,
thisis not too difficult. We can move the sprite up
and down a pixel at a timewithout having to recode
the sprite shape table.

The BASIC program below will place our example
sprite in the top left-hand corner of the screen. The
data statements at the end contain thecoded data
for the sprite laid out as above. Remembe, this is an
8-by-16sprite, so it is stored as 4 bytes (= 8 pixels)
wide and 16 bytes high.

 10 MODE2

 20 VDU23,1,0;0;0;0;

 30 FOR A%=0 TO 1

 40 FOR B%=0 TO 7

 50 FOR C%=0 TO 3

 60 READ D%

 70 ?(&3000+A%*640+B%+C%*8)=D%

 80 NEXT,,

218

OPERATING SYSTEM ROM
MEMORY MAPPED INPUT/OUTPUT

OPERATING SYSTEM ROM

RAM USED FOR
HIGH RESOLUTION GRAPHICS

4 PAGED ROM's eg BASIC

RESERVED FOR OPERATING
SYSTEM USE

USER's BASIC PROGRAM AREA

DYNAMIC VARIABLE STORAGE

BASIC STACK ¯
-

®

PAGE

TOP
LOMEM

HIMEM

HEX DECIMAL
&FFFF
&FF00
&FC00

&C000

&8000

MOVEABLE BOUNDARY

&4000¬

MOVEABLE BOUNDARY

&2000

&E00

&0000

65535
65200
64512

49152

32768

16384

8192

3584

0

32K RAM
IN MODEL B

TO &8000

MEMORY MAP (detail)

operating system workspace

user defined character definitions

user defined function key definitions

various buffers

various buffers

misc. workspace

language ROM workspace

misc. workspace

operating system workspace

6502 stack

zero page

&E00

&D00

&C00

&B00

&A00

&900

&800

&400

&300

&200

&100

&0000

3584

3328

3072

2816

2560

2304

2048

1024

768

512

256

0

¯

-

-
¯

¬
®

®

®

16K RAM
IN MODEL B

TO &4000

35

4 MEMORY MAP AND MEMORY MAP
ASSIGNMENTS

FF00- FFFF
Operating System ROM

FE00- FEFF
Internal memory mapped input/output (SHEILA).

FD00- FDFF
External memory mapped input/output (JIM).

FC00- FCFF
External memory mapped input/output (FRED).

C000- FBFF
Operating system ROM

B000- BFFF
One or more languages ROMs (e.g. BASIC, PASCAL).

4000- 7FFF
Optional RAM on Model B.

0000- 3FFF
Always RAM.

E00
Default setting of PAGE

D80- DFF
Allocated to machine operating system

D00- D7F
Used by NMI routines (e.g. by Disc or Econet filing system)

COO- CFF
User-defined character definitions

B00- BFF
User-defined function key definitions

A00- AFF
RS423 receive, and cassette workspace

900- 9FF
RS423 transmit, cassette, sound and speech workspace

800- 8FF
Miscellaneous workspace

400- 7FF
Language ROM workspace

300- 3FF
Miscellaneous workspace

200- 2FF
Operating system workspace and indirection vectors

100- 1FF
6502 stack

36

000- 0FF
Zero page

ZERO PAGE

FF
The top bit is set during an ESCAPE condition
F0- FE
Address following detected BRK instruction
FC
User IRQ routine save slot for register A
D0 to FB
Allocated to machine operating system
B0 to CF
Allocated to current filing system
90 to AF
Allocated to machine operating system
70 to 8F
Free for user routines
0 to 6F
BASIC langauge

5 OPERATING SYSTEM COMMANDS
Command Min abbr. Meaning
*BASIC *B. selects BASIC ROM
*CAT * . displays catalogue of files
*CODE *CO. allows user to incorporate his own command

into operating system command table
*DISC *D. selects disc file system
*EXEC *E. text files can be used if they were keyboard

input
*FX *F. OSBYTE calls may be performed directly from

keyboard (see *FX calls)
*HELP *H. prints version number of operating system
*KEY *K. programs user-defined keys (see section on

keys and cursors)
*LINE *LI. executes machine code at location pointed to

by contents of USERV
*LOAD *L. loads a section of memory
*MOTOR *M. turns cassette motor relay on and off
*NET *N. selects network file system
*OPT *O. For cassette and ROM filing systems

*OPT 0,0 restores default values
*OPT 1,0 turn off filing system messages etc.

*ROM *RO. selects ROM file system
*RUN * / loads and executes a machine code program
*SAVE *S. saves section of memory
*SPOOL *SP. copies all screen output to named file
*TAPE *T. selects cassette filing system (1200 baud)
*TV *TV moves picture up and down screen

E.g. *TV255 moves display one line down
* | * | ignored by computer (used to put remarks in a

series of operating system commands)
* / * / treated as *RUN
[The command-line interpreter does NOT distinguish between upper and
lower case characters in the command name.]

37

TEN GREEN
BOTTLES

True to its title, if you are using a colour TV, you will see
10 green bottle-shapes fined up against a black back-
ground (programmed in fine 60). The object of the game
is quite simply to knock the bottles off the wall in the
shortest possible time.

To make matters more difficult the catapult you fire
moves constantly across the screen. When you want to
fire it press the ‘I’ key.

When you score a hit you will hear a satisfying sound
(programmed in fine 390); at the end of the game the time
you took is displayed.

MORE GAMES FOR YOUR BBC MICRO

38

 1 0 R E M 1 0 G R E E N B O T T L E S
 2 0
 3 0 M O D E 4
 4 0 V D U 1 9 , 1 , 2 , 0 , 0 , 0 , 0
 5 0 V D U 2 3 ; 8 2 0 2 ; 0 ; 0 ; 0 ; 0 ;
 6 0 V D U 2 3 , 2 2 4 , & 1 8 , & 1 8 , & 1 8 , & 3 C , & 3 C , & 3 C
, & 3 C , & 3 C
 7 0 V D U 2 3 , 2 2 5 , & 0 0 , & 0 0 , & 0 0 , & F F , & F F , & 0 0
, & 0 0 , & 0 0
 8 0 V D U 2 3 , 2 2 6 , & 3 C , & 3 C , & 3 C , & F F , & F F , & F F
, & F F , & F F
 9 0
 1 0 0 P = 0
 1 1 0 H = 0
 1 2 0 T = 0
 1 3 0 E = 1
 1 4 0
 1 5 0 C L S
 1 6 0 P R I N T : P R I N T : P R I N T : P R I N T
 1 7 0 D I M A $ (1 0)
 1 8 0 F O R X = 1 1 T O 2 0
 1 9 0 P R I N T T A B (X , 5) C H R $ (2 2 4)
 2 0 0 N E X T
 2 1 0
 2 2 0 P R I N T
 2 3 0 F O R X = 1 T O 2 0
 2 4 0 P R I N T T A B (X , 6) C H R $ (2 2 5)
 2 5 0 N E X T
 2 6 0
 2 7 0 P R I N T T A B (P , 2 0) ; " "
 2 8 0 P = P + E
 2 9 0 I F P = 0 O R P = 2 8 T H E N E = - E
 3 0 0 P R I N T T A B (P , 2 0) C H R $ (2 2 6)
 3 1 0 I F I N K E Y $ (0) = " 1 " T H E N 3 7 0
 3 2 0 * F X 1 5 , 0
 3 3 0 I F I N K E Y $ (0) < > " " T H E N 3 3 0
 3 4 0 T = T + 1
 3 5 0 G O T O 2 7 0
 3 6 0

39

TEN GREEN BOTTLES

 3 7 0 I F ? F N S (P , 5 , 0) < > & 1 8 T H E N 3 4 0
 3 8 0 P R I N T T A B (P , 5) " O "
 3 9 0 S O U N D 1 , - 1 5 , 0 , 2 0
 4 0 0 A $ (I N T (P / 3) + 1) = " 1 "
 4 1 0 H = H + 1
 4 2 0 I F H < 1 0 T H E N G O T O 3 3 0
 4 3 0 P R I N T T A B (0 , 5) ; " T I M E " ; T
 4 4 0 V D U 2 0
 4 5 0 E N D
 4 6 0
 4 7 0 D E F F N S (X , Y , N) = H I M E M + (Y * 4 0 + X) * 8 + N

MORE GAMES FOR YOUR BBC MICRO

40

CLIFF GOLF
David the golfer has played a rather bad first shot — he
has ended up at the top of a cliff far from the green. See if
you can guide the ball to the green by suggesting how
hard David should hit the ball.

The path of the ball is based on an x^ Y equation, so
that it is quite difficult to estimate the strength of shot
required. Most of this program is concerned with drawing
the cliff and the ground. The program shows triangle
drawing and the use of POINT.

 1 0 R E M C l i f f G o l f
 2 0
 3 0 M O D E 1
 4 0 V D U 1 9 , 1 , 2 , 0 , 0 , 0
 5 0 G C O L 0 , 1
 6 0
 7 0 M O V E 7 0 , 0
 8 0 P L O T 8 5 , 1 0 0 , 9 8 0
 9 0 D R A W 0 , 9 8 0
 1 0 0 P L O T 8 5 , 0 , 0
 1 1 0 M O V E 1 2 8 0 , 0
 1 2 0 P L O T 8 5 , 1 2 8 0 , 7 0
 1 3 0 D R A W 6 5 , 7 0
 1 4 0 P L O T 8 5 , 6 5 , 0
 1 5 0
 1 6 0 G C O L 0 , 2
 1 7 0 M O V E 3 8 0 + R N D (9 0 0) , 4 0
 1 8 0 P L O T 0 , 0 , 3 0
 1 9 0 P L O T 0 , 3 0 , 0
 2 0 0 P L O T 8 1 , 0 , - 3 0
 2 1 0 P L O T 8 1 , - 3 0 , 0
 2 2 0 P L O T 8 1 , 0 , 3 0
 2 3 0 M O V E 7 0 , 1 0 0 0
 2 4 0 G C O L 0 , 3
 2 5 0

41

CLIFF GOLF

5 Music Theory for
Micros

If you stop to consider the matter you will realise that literally every subject
of any complexity inevitably acquires its own specialist vocabulary. Music is
no exception to this general rule for just as the pioneers discovered that it
was necessary to develop languages likeBASIC and FORTH to facilitate the
use and development of computer technology, so the world of music also
has a special language all of its own. Since the scope of music only
encompasses pitched notes and rhythm, however, its structure is
considerably simpler than that of any computer language. For this reason I
believe that most newcomers to music theory who have had some general
computer experience will pick up the rudiments of music theory quite
easily.

I have felt it necessary to digress somewhat and emphasize this point
because of the experience of music teaching many of you will doubtlessly
have had at school. For me, school music lessons comprised of note
learning, primarily concerned with absorbing key signatures, composers'
names and other pieces of musical gobbledygook. In this chapter I do not
intend to bombard you with meaningless mnemonics designed to make it
easier for you to remember the notes of the treble clef. This type of
knowledge can be acquired quite naturally through growing familiarity with
music itself. Instead, I intend to provide you with a vocabulary which will
allow you to understand the more musically technical sections of this book
and, show you how easy it is to use sheet music as reference material.

PITCH NOTATION
In order to make it possible for us to speak about individual note pitches we
must first start off by giving each note a name. The accepted method for
doing this is to call them after the letters in the alphabet between A and G.
If you look at a piano keyboard, you will see that the notes are found at the
positions shown below:

5 Music Theory for Micros 71

A C C D E F G A C C D

On the BBC Micro we have pitch values such that the A note above Middle
C=89, 8=97, C=161, D=109, E=117, F=121, G= 129 and, for the A note
one octave above the first, A=137. As you can see, this method of notation
has its drawbacks. All the As, in whatever octave, have the same name. Bear
in mind that a note which is one octave above another has double that
note's frequency.

A better method for illustrating pitch is to abandon numbers and letters
altogether and draw them on a musical stave, as is illustrated below:

!G
Middle C

=L
D
L

E

L
F

L
G

L
A

L
B

L
C

L
D

L
E

L
F

LCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
In this case there is no ambiguity in discriminating between notes of
different octaves. In addition, the concept of higher notes being situated
higher up the stave is both extremely helpful and logical. A stave is, of
course, the name given to the standard arrangement of five lines!

The symbol at the beginning of the stave is called a Treble Clef. This
clef is used for the treble register of a piano and all instruments that play in
that range, such as flutes, oboes, guitars etc. Bass instruments have their
own clef, unsurprisingly called the Bass Clef. This is used by instruments
such as trombones, bassoons and double basses. It looks like this:

"
F
L

G

L
A

L
B

L
C

L
D

L
E

L
F

L
G

L
A

L
B

L
Middle C

=L
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
A piano covers such a large range that it uses both clefs, and we can
correlate piano keyboard and notation as follows, with each white note
having its own fine or space. BBC Micro pitch values are shown also.

PersonalComputer
World

SOFTWARE
CENTURY

GAMES
COLLECTION

FOR THE

PCW

BBC MICRO

D I G I T A L L Y R E M A S T E R E D E D I T I O N

GOLDEN FLEECE

By Simon Bryan

Golden Fleece is an interesting adventure game with the added
bonus of exciting graphics at each location. The object of your
quest is to find the Golden Fleece, which is at one of the 18
locations. You may type in one or two word commands: the
commands that the program understands are GO, DIG, GET,
DROP, PAY, TAKE, CUT, ROW, KILL, LIGHT, OPEN and INV
(inventory - to give you a list of the objects that you are
carrying). Directions may be entered in any of three different
ways; for example to go north you can type GO NORTH, NORTH
or just N.

The which the program is written makes it easy to extend.
Each verb is dealt with by its own procedure, so to add an extra
verb all you have to do is add a line to check for it, at line 535
for example, and then add a procedure to deal with it.

Program Description
50 Change mode.
60 Change colour 1 to yellow and turn off the cursor.
70-90 Redefine the # $ & % and ' characters.
100-260 Print the Introduction.
270 Change colour 1 to flashing.
280 Wait for a key to be pressed and clear the screen.
300 Change colour 0 (the background) to blue.
310 Change colour 1 to white.
320 Set up the arrays.
330 The start of the firs loop.
340 Set up the variables for a new game.
350 The start of the game loop.
360 Draw the picture for the room that you are in.
370 See if the game has ended.
380 Print a list of the objects in the room.
390 See if Gandalf will appear.

23

400 Get the command string.
410-430 See if a direction has been typed in.
440-530 Check the fist of verbs and act accordingly.
540 See if the command was recognized.
550 Return to the main game loop.
560-590 See if another game is wanted and act accordingly.
610-650 PROCobject - print a list of objects in the room.
610-100 PROCmove - deal with a movement
120-190 PROCinv - print a fist of the objects that the player
carrying.
810-850 PROCdig - deal with the word "DIG".
810-940 PROCget - add an object to the player's inventory.
960-1030 PROCdrop - leave an object in the room.
1050-1080 PROCdelay - delay for a given time unless a key
pressed.
1100-1140 PROCcut - deal with the verb "CUT"
1160-1210 PROCpay - deal with the verb "PAY"
1230-1280 PROCrow - deal with the verb "ROW'
1300-1320 PROCkill - deal with the verb "KILL"
1340-1310 PROClight - deal with the verb "LIGHT"
1390-1440 PROCopen - deal with the verb "OPEN"
1450-1520 PROCgandalf - print Gandalfs arrival.
1540-1560 PROCprint - print a given string with a short delay
between each letter.
1580-1640 PROCget-command - input a command string split it
into two parts - VERB$ and NOUN$.
1660-1680 FNinstr - perform the INSTR command and avoid the
bug in this command found in BASIC 1
1100-1110 PROC setup - set up the variables for a new game
1190-1810 PROCpicture - print the picture of a given room
1890-1910 Data for the arrays.
1930-2450 Data for the rooms.

 10 REM ** * * * * * * * * * * * * * * * * * * *
 20 REM * The Go lden f leece *
 30 REM * By S imon Bryan *

24

9
Characters

Electron users are able to define their own graphics characters, either
to produce special alphabets and symbols or, more often, to use as the
basis of graphics displays in games. Designing a single character is
easy, and is explained fully in Chapter 20 of the Electron's User Guide.
Designing characters is fun, but you need lots of squared paper on
which to work out the designs and you may need to make several
attempts before you make each design perfect. Even then, the
character may not be quite what you intended when you finally see it
displayed in its proper size on the screen.

This program provides a large-scale display on the screen on which
you draw your design. You use the editing keys, the 'arrow' keys and
COPY key of the Electron, for this. The design is easily altered, too.
You can change it a little at a time until it isjust right. While you are
building it up as a large-scale version in the design area, you see it
appearing at the bottom of the screen in its proper size. This is the size
it will be when you use it in your own programs. As you work out
each design, you will be able to gauge how effectivc it will be in use.
When the design is ready, the program calculates all the values that are
required for the VDU statement which will define the new character.

The program helps you design more thanjust a single character. To
produce larger and more elaborate graphics, we often want to compose
a design from two or more characters, placed side by side. As shown
in Fig. 9.1, designs made from two or more characters offer much
more scope for inventiveness than those made from a single character.
The program provides an area on the screen where you can work with
up td nine characters at once.

113Characters

Using the program

As soon as you run the program the display appears as in Fig. 9.1. At
this stage the design area, enclosed by the red and green borders is
completely blank. The borders are coloured red and green to help you
see exactly where the area is sub-divided into three rows ofthree large
squares. The dashed lines shown in Fig. 9.1 pick out these squares, but
the dashed lines do not appear on the screen.

Below the design area is a row of green numbers. It looks like rmo
rows of numbers but, if you read domn each column, you can see that
these are the numbers '24', '25', '26' and so on, up to '55'. These
numbers are to be thought ofas '224', '225', '226', up to '255'. The
initial '2' has been left out ofeach numb::r to save a line on the screen.
This range of numbers (224 to 255) covers the 32 ASCII codes
allocated for user-defined graphics in the Electron. The program
allows you to define characters for any or all of these codes.
Eventually, the characters you design will appear in a row below their
respective numbers. You can see how this will Iook in Fig. 9.1.

The design area allows nine characters out of the available 32 to be
designed at one time. When you first run the program, the message
'Which number? (224-247)' will be showing at the bottom of the

Fig. 9.1. The screen display for CHARACTERS.The dashed lines and
encircled numbers are to mark out the individual characters; they do

not appear on the screen.

1 3

4 5 6

7 8
9

13

Get that bird!

If your kids are like the one that has the contract to hike mud into
our house, they will love a certain cartoon character that travels at a
great rate of knots along a road, always eluding the foxy type who is
trying to catch him. In this computer game, they are trying to catch
the bird. We suppose that a charge of dynamite has been placed in
the road and as soon as the bird appears, the player has to slap any
key to detonate the charge. The problem is of course that the bird
travels very fast indeed. Actually, I have included skill levels from 0

to 9, and although anyone can win at the lowest level, quite frankly,
I think that level 9 is completely impossible - which is to admit that I
at least have never won at that level!

The background to the picture comprises sky and hills and
contains a random element so that every game is slightly different.
When you are tired of playing the game, you can try experimenting
with the numeric values of line 90 in order to see the different types
of terrain that will occur. What I have done is to divide the screen
across into 12 sections and then, starting at the top of the picture, to
create random values varying slightly as we move across. These are
put into one row of the landscape array, L%(X,Y). Subsequent rows
have a smaller deviation, so that the hills gently flatten into
undulating land.

The road is always the same and is built around a sine wave
decaying as it nears the bottom of the screen. In addition, choosing a
step size of -43 (lines 210 and 250) make it impossible for the road
to follow the wave closely, thus appearing asymmetrical.

Lines 280 to 310 define four separate characters. These are four
round shapes of increasing size, to represent the fleeting bird as it
rushes headlong down the picture. In run-time, there is no
opportunity to study the bird, and the general impression of
something rushing down the road towards the viewer is quite
sufficient. If desired however, the last two shapes might be
redesigned as a cartoon character.

The game loop is contained in the REPEAT-UNTIL loop of lines
350 to 470 and will repeat forever until the player is successful.
There is an indefinite pause in line 360 and then line 370 starts a
cackling sound that accompanies the bird. The *FX15 command of
line 360 has flushed the input buffer so that the user cannot slap a
key before this instant. Line 390 closely mirrors the road
construction, so the path of the bird is down the road centre, with
lines 400 to 430 choosing a character size to suit the position down
the screen.

Line 440 looks for a user input (no RETURN necessary), while
line 450 checks if the bird has reached the bottom of the screen. The
difficulty level affects the height up the screen that represents safety
for the bird, with zero equal to the very bottom. This is checked on
line 460. If a key has been hit and the bird is still above the safety
level, the program jumps to line 510, where an explosive sound is
made and a flashing explosion appears at an appropriate spot in the
road.

Of the two procedures, PROCW provides a delay of three one-
hundredths of a second for the reason outlined in the Bicycle Wheel
program - the image of the spot or bird must be allowed to form
before being wiped. A value less than three may make the bird
totally invisible, while a larger value will make the game a trifle too
easy. Try it and see. PROCPAINT will draw and fill any four-sided

40 Get that bird!

figure by utilising two triangles. The colour is specified before the
procedure is called. Notice that we have a number of variables
declared as LOCAL; this is a useful provision, because not only may
we use the same variable labels elsewhere, but also there is a saving
in memory space, which sometimes is important.

Variables

L%(X,Y) Lanscape heights
LVL% Diffiuclty level
Z% Counter for row in landscape array
X% Position along the row; also horizontal position
F% Field counter
C1% Field colour
Y% Road sections, or vertical position
K Timer for starting run; also checking for key-pressed

condition
Q% Counter for decreasing amplitude of explosion (decay)

Get that bird! 41

 10DIML%(7,11):*FX9,0
 20MODE7:PRINTTAB(5,5);"GET THAT BIRD!"''
 30PRINT"Difficulty level 0-9?"
 40REPEAT:LVL%=GET-48:UNTIL LVL%>=0 AND LVL%<=9
 50
 60REM - Draw background
 70
 80MODE2:FOR Z%=1TO6
 90Y%=RND(30)+(900-30*Z%):L%(Z%,1)=Y%
 100FOR X%=2 TO 11:IF RND(1)>.5 GOTO120
 110Y%=Y%+RND(20)/Z%
 120Y%=Y%-RND(20)/Z%
 130L%(Z%,X%)=Y%:NEXT:NEXT:GCOL0,134:CLG
 140FORF%=1TO6:READC1%:GCOL0,C1%:PROCpaint(F%):NEX TF%
 150ENVELOPE1,1,-26,-36,-45,255,255,255,127,0,0,-1 27,126,0
 160DATA4,5,2,3,2,3
 170
 180REM - Draw road
 190
 200VDU29,600;0;18,0,5:MOVE0,820:PLOT0,0,0:GCOL0,0
 210FOR Y%=820 TO 0 STEP-43
 220X%=SINY%*Y%*.6
 230PLOT85,(X%+820-Y%),Y%:PLOT81,-820+Y%,0
 240NEXT:GCOL0,7:MOVE0,820
 250FOR Y%=820 TO 0 STEP-43
 260DRAWSINY%*Y%*.6+(820-Y%)*.5,Y%:NEXT
 270GCOL4,0:*FX11,0
 280VDU23,224,192,192,0,0,0,0,0,0
 290VDU23,225,192,192,192,192,0,0,0,0

 300VDU23,226,224,224,224,224,224,224,224,0
 310VDU23,227,28,62,255,255,255,255,62,28
 320
 340
 350REPEAT
 360K=TIME:REPEAT:UNTIL TIME>=K+RND(1000)+300:*FX1 5,0
 370SOUND1,1,255,255
 380Y%=820:*FX12,0
 390X%=SINY%*Y%*.6+(820-Y%)*.5:MOVEX%,Y%:*FX15,1
 400IFY%<=200PRINTCHR$227:PROCW:PRINTCHR$227:GOTO440
 410IFY%<=400PRINTCHR$226:PROCW:PRINTCHR$226:GOTO440
 420IFY%<=600PRINTCHR$225:PROCW:PRINTCHR$225:GOTO440
 430PRINTCHR$224:PROCW:PRINTCHR$224
 440K=INKEY(0)
 450Y%=Y%-43:IFY%>=0 AND K=-1 GOTO390
 460IFLVL%*50<Y%GOTO510
 465*FX15,0
 470UNTIL 0
 480
 490REM - Got him!
 500
 510VDU29,X%+600;Y%+43;
 520FOR Z%=1 TO 10:MOVE0,0
 530MOVERND(200)-100,RND(200)
 540PLOT81,RND(200)-100,RND(200)
 550NEXT:*FX15,0
 560FOR Q%=-160TO0:SOUND0,Q%/10,16,1:NEXT
 570G$=INKEY$(400):MODE7
 580PRINTTAB(5,5);"YOU GOT HIM!"
 590G$=INKEY$(500):RESTORE:GOTO80
 600
 610DEFPROCW:K=INKEY(3):MOVEX%,Y%:ENDPROC
 620
 630DEFPROCpaint(S%):LOCALLZ%,X%,X1%,A%,B%,C%,D%
 640FOR Z%=1 TO 10:X%=(Z%-1)*128:X1%=Z%*128
 650A%=L%(S%+1,Z%):B%=L%(S%+1,Z%+1)
 660C%=L%(S%,Z%):D%=L%(S%,Z%+1)
 670MOVE X%,A%:MOVE X%,C%
 680PLOT85,X1%,B%:PLOT85,X1%,D%
 690NEXT
 700ENDPROC

42 Get that bird!

Hexagons

Britain doesn't seem to have drive-in cinemas. In winter it's so cold
that nobody would dream of sitting outside in the car for several
hours; in summer the light lasts so long in the evening that
nothing would show on the screen; and it's almost always too wet
anyway.

I used to enjoy going to the drive-in in Australia. It's cheaper
than the normal cinema, the atmosphere is much less stuffy, you
can dress as you please (not that I don't normally, but my friends
feel obliged to dress up for the indoor cinema), and you see two
full length feature films rather than one.

But the best thing about the drive-ins, or some of them anyway,
is the interval. After they've finished showing those dreadful slide-
and-monologue adverts (which you ignore by getting something
from the cafeteria), they show the most delightful, relaxing,
soothing display I've ever seen outside nature. Everyone else is
busy queuing, eating, talking, or whatever else one does in the
interval; but I sit there hypnotised, my eyes glued to the screen,
until the second film starts.

What, you demand, is this captivating display? It's very simple,
but none the less beautiful for it. They project coloured light
through bobbly glass (the sort bathroom windows are made of)
and very, very slowly tum the wheel holding the colour filter.
Another colour gradually starts to seep across the screen - but not
just coming in from one side, as you might expect; the refraction
effects of the glass scatter the incoming colour across the screen,
bobble by bobble. The effect is superb.

It has long been my intention to acquire a slide projector, a bit
of bubbly glass, an electric motor geared way down, and a wheel
holding various filters, so that I could repeat the effect in my own
home. I haven't managed it yet, but I have acquired a computer.

This program uses a repeating pattern of hexagons and
diamonds to simulate the glass. Its regularity is rather unrealistic,
but you try doing something like this without regularity! Each

84 Quality Programs for the BBC Micro

basic unit (one hexagon and one diamond) is made up of 596 mode
5 pixels, excluding the lines defining the shapes. The program
simulates the seeping light by making 20 passes through each unit,
filling in a few more pixels each time.

Unfortunately, the decision as to which pixels should be filled
in on which pass is almost impossible to program. The incoming
colour must satisfy lots of rules which are not very easy to specify.
It must, for instance, start by affecting the far side of each unit, and
leave the near side until quite late. While it is theoretically possible
to program all such constraints, and then let the computer
randomly choose pixels which satisfy them, there are two reasons
for not doing it this way. First, it would take the programmer too
long to appreciate and specify all the constraints; and second, it
would take the computer too long to do it would spend more time
discarding unsuitable pixels than it would filling in the new colour.

So I have decided for myself how many pixels should be
affected in each pass, and even which ones they are. That
information must be passed to the program as data. I apologise for
the quantity of it, but assure you that the effect is worth the time
you will spend typing it in and proof reading it. (Of course if you
have the cassette of the programs, there's not a lot of effort
involved.)

If you have a Model A micro, the quantity of data causes
another problem: there isn't room in memory for both the data and
the program. I have taken advantage of this situation to
demonstrate a feature which even Model B programmers might
need now and then. There are two separate programs. The first
reads the data, stores it in compact form in an area of memory
above the top of either program, and calls the next program. The
second program uses the data stored by the first.

How to use the programs

Type in the first program and save it on tape (or disc, if you have
one). Type in the second program and save it. You don't have to
use the names that I've used for the files, but you must be sure that
the name you use in the CHAIN command in the first program is
the same as the name you use for the file the second program is
SAVEd in. If you have a Model A, don't type the comments in the
second program - they take up too much space.

Hexagons 85

Rewind the tape to a spot before the first program, LOAD it
and RUN it (or simply CHAIN it). It will search for the second
program on the tape when it is ready.

The program will run until broken into with ESCAPE or
BREAK. It takes about 20 minutes to complete a full cycle. I see it as
fulfilling the same sort of function as a goldfish bowl - something
soothing to look at now and then, rather than something to
concentrate on.

Hexagons, as a darker colour diffuses in from the left

The Second Book of Listings

Mart in
Bryant

DIGITALLY REMASTERED EDITION

Ricochet Golf
Rules
The rules are as for normal golf; ie hit your ball into the hole using as few
shots as possible.

The edges of this golf course, however, are elastic and so the ball
bounces off anything that it hits.

Up to nine players can play at once, each taking it in turn to complete
the current hole.

Display
The display shows the current hole, its par rating and the current player's
name, along with his shot number.

The ball is shown with a fine near it, to show the direction of aim.
When all players have completed the hole, the par ratings for each

player are shown on a scoreboard.

Operation
To aim the ball the 'cue' near the ball can be rotated with the keys:
'Z' - rotate cue clockwise
'X' - rotate cue anti-clockwise

To hit the ball press a number key from '1' to '9'. The weakest strength
hit is '1' and the strongest (longest) hit a '9'.

Because different display equipment shows different colours better, a
facility has been provided to change the foreground and background
colours easily! The colours may be moved one at a time through the eight
possible colours on the BBC micro.
To advance the foreground colour press 'F'
To advance the background colour press 'B'.
(Note that when the foreground and background colours selected are the
same, the hole will 'disappear' until you change one of the colours.) You
could, perhaps at a certain stage of a party, invite people to play blind
ricochet golf!

12

Program
The program reads the hole shapes from the data statements at the end of
the program. The first number is the par value for the hole, followed by
the X, Y coordinates of the apexes, and finally the hole and tee
coordinates.

A negative apex X-coordinate signifies an absolute move to the current
coordinate pair. A positive apex X-coordinate signifies an absolute draw to
the current coordinate pair. The final apex coordinates are specified with a
negative Y-coordinate. The hole coordinates specify the centre of the
drawn hole. The tee is specified by a lower-X-coordinate, an upper-X-
coordinate and a Y-coordinate. The ball is teed off from a random
position along the tee line.

Section/Variables Function
Main routine Initialize data,setup players, main game

loop, game over
HCX% Store hole X-coordinates
HCY% Store hole Y-coordinates
SC% Player scores
N$ Player names
BC% Background colour
FC% Foreground colour
NP% Number of players
NH% Number of holes
TPAR% Total par
HN% Current hole number
FN% Current player number
PROC PLAYHOLE Play current hole to completion for

current player
SH% Shot number
CH% Cue angle
LWI% Last-wall-hit index
K$ Input key
BE Ball energy
BA Ball angle
PROC WHOOP Play 'hole-in-one' fanfare
PROC DELAY Delay for one second
FN HOLED Check if ball in hole
PROC MOVEBALL Move ball when hit
BX Ball X-coordinate
BY Ball Y-coordinate
BDDX Saved increment in ball X-coordinate
EDDY Saved increment in ball Y-coordinate
BDX Increment in ball X-coordinate
BDY Increment in ball Y-coordinate
MISS% Missed-wall flag
PROC SETD Set X,Y increments for ball movement

13

PROC PBALL Print the ball
PROC MOVECLUB Erase, move and redraw club
A% Angle change
PROC PCLUB Print club
PROC PSCORES Print player's scoresheet
PROC READHOLE Read hole 'shape' from data tables
PAR% Par value for current hole
HCI% Hole coordinate pair index
HX% Hole X-coordinate
HY% Hole Y -coordinate
TLX% Tee lower X-coordinate
TUX% Tee upper X-coordinate
TY% Tee Y-coordinate
PROC PHOLE Print current hole

Suggestions
Construct your own data statements for a collection of different golf
courses!

For variety you could change the course to only play nine holes say, but
select which nine randomly from the whole list of eighteen holes (or many
more if you add your own).

There is a minor infelicity: The message at the top of the screen can be
'after 1 holes'. Make it grammatical!
(My best score: 9 under par)

The Listing
 10 *FX4,1
 20 DIMHCX%(99) ,HCY%(99) ,SC%(9) ,N$(9)
 30 BC%=2:FC%=7
 40 REPEAT
 50 RESTORE
 60 MODE7:PRINTTAB(5 ,1) "Number o f p layers (1 -9)
?" ;
 70 REPEAT NP%=ASCGET$-ASC"0"
 80 UNTILNP%>=1ANDNP%<=9
 90 PRINT;NP%
 100 FORI%=1TONP%:PRINT ' "Name o f p layer " ; I%; : I
NPUTN$:N$(I%)=LEFT$(N$,15)
 110 NEXT
 120 FORI%=1TONP%:SC%(I%)=0
 130 NEXT
 140 NH%=18:TPAR%=0
 150 FORHN%=1TONH%
 160 PROCREADHOLE
 170 FORPN%=1TONP%
 180 MODE4:VDU23;8202;0 ;0 ;0 ;
 190 PROCPHOLE

14

Chapter 9

FILE HANDLING

9.1 TYPES OF FILE

The tape and disc filing systems on the BBC microcomputer are not restricted
merely to storing BASIC programs. It is also possible to create files to contain
data. The data could represent numerical information or text, and if required
both types can be stored in a single file. This type of file is frequently called a
textfile or data file and since, on some other computer systems, textfile is used
to mean a file more like the ASCII file, we shall here refer to such files as data
files.

It is worth pointing out straight away that the BBC computer operating
system makes no intrinsic distinction between different types of file. They are
all stored in the filing system, be it tape, disc or ROM, in exactly the same
way.

Thus, any file can be loaded into memory (if there is room) by the
command

*LOAD <filename> (<Load address>)

If the file happens to be a BASIC program, and the load address defaults to, or
is given as, the current setting of PAGE, then it will be loaded and can be run
just as if it had been loaded with the BASIC command LOAD "<filename>" .

Similarly, you can use the command *SAVE to save a BASIC program, if
you know the right addresses to use.

What really creates an effective distinction between different types of file
is the way that the information in the file is structured. This structuring will be
carried out by the commands used to create the information or to store the
information in the file. We can in this sense distinguish at least five separate
file types

BASIC program
machine code program
binary file
data file
ASCII file

125

BASIC programs and machine code programs must have the information
structured as the appropriate type of program before saving to a file.

Data files and ASCII files have their information structured (differently)
by the commands which handle the respective types of file.

Binary files can contain any type of information, including the other four
file types and also otherwise incomprehensible information such as graphics
dumps.

We can deal fairly rapidly with the types of command associated with
three of the file types.

BASIC programs

These are normally created by SAVE and loaded by LOAD or loaded and run
in a single operation by CHAIN. These three commands are BASIC
commands rather than operating system commands, so they are not preceded
by a star, and the filename must be in between inverted commas.

Machine code programs

These can only be saved and loaded with the commands *SAVE, *LOAD and
*RUN. The last command is equivalent to *LOAD followed by CALL, and
plays a role similar to CHAIN for BASIC programs.

Binary files

Any section of memory, such as the area of a graphics display, can be saved
and loaded using *SAVE and *LOAD (use of *SAVE and *LOAD are
described in detail in Section 10.8.5). Thus to save a graphics picture in Mode
0, 1 or 2, the command would be

*SAVE GRDUMP 3000 8000

The picture could be loaded back simply by

*LOAD GRDUMP

The final two filetypes require special commands, and these are dealt with in
the following sections.

Exercise 9.1

Enter a very short BASIC program such as

10 PRINT "*SAVE test"
20 PRINT "program compteted"

Save it to disc using the command

*SAVE TESTPG 1900 19FF (assuming that you have a disc interface in
your computer, so that &1900 is the normal
program start position)

126

Type NEW to clear the program, then load it back again with

*LOAD TESTPG

LIST and RUN the program.

Exercise 9.2

Switch into Mode 1 and generate a simple graphics display, by commands
such as

MODE 1
MOVE 1,1
DRAW 1000,1
DRAW 1000,1000
DRAW 1,1000
DRAW 1,1
DRAW 1000,1000
MOVE 1000,1
DRAW 1,1000

Use the commands given above to save the file with *SAVE, clear the screen
with CLS, and then restore the display with *LOAD. (Note, however, that an
interesting effect occurs if the screen display is scrolled between *SAVEing
and *LOADing.)

9.2 HANDLING DATA FILES

9.2.1 Files and buffers

In BASIC, a set of commands is provided to facilitate handling of data files.
Most of the commands can be used with cassette, single-user disc or level 2
Econet systems, and even the less common filing systems such as Prestel and
IEEE.

One important difference between the handling of, say, a BASIC program
file and a data file is that in the former case the saving or loading of a file is
required to be carried out as far as possible as a continuous operation in the
minimum of time, whereas for a data file these operations may extend over
long periods. For example, in a data logging application, it may be necessary
to record measured values of parameters in an experiment or industrial
process at intervals of minutes or hours over a period of days. Similarly,
where a file contains a large amount of data to be processed during execution
of a BASIC program, it will be necessary to read the data in at irregular
intervals as and when required by the program.

In order to minimize the number of disc operations, which relative to
RAM operations are very slow, a section of memory is allocated for transfer
purposes. This section is known as a buffer and has a capacity of 256 bytes,
equivalent to one sector of the disc. All transfers between the computer and
the disc must go through this memory. For writing to a file, the data in the
buffer is transferred to the disc only when the buffer is full or at the end of file
handling when the file is closed. In reading from a file, the buffer is filled and

127

Chapter 8 Special effects with
characters and strings

In this chapter, we discuss various special effects that can be obtained with characters
and strings on your BBC micro, but first, we present a little more information on how
characters aire stored and processed inside the machine.

8.1 How characters are stored

A character is stored inside the computer as an integer that occupies 8 bits or one byte.
There is an internationally agreed standard set of codes for the commonly used
characters. These arks the ASCII codes (American Standard Code for Information
Interchange),

The first table in Appendix 7 contains a list of the normal display characters and
their ASCII codes. Actually, in MODE 7, a different international set of characters is
used, the Teletext characters. This means that, in MODE 7, a few of the characters
displayed on the screen are different from the picture on their keys. However, these
characters are used fairly infrequently.

Conversion functions: ASC and CHR$

Two special functions are available for converting the first character of a string into its
numeric code (ASC) and for converting a numeric code into a single character string
(CHR$). The statement

PRINT ASC("+") , ASC("A") , ASC("a")

will print the numbers

 43 65 97

whereas the statement

PRINT CHR$(38) ; CHR$(75) ; CHR$(122)

129

will print the characters

&Kz

The following program inputs a sequence of 10 ASCII codes and builds up a string
containing the 10 corresponding characters.

 10 chars$ = " "

 20 FOR i = 1 TO 10

 30 INPUT "Nex t code " , code

 40 chars$ = chars$ + CHR$(code)

 50 NEXT i

 60 PRINT "These codes make up " ; chars$

The VDU statement
The VDU statement provides an alternative way of sendigg characters to the display
hardware. The word VDU is followed by a list of character codes separated by commas
and these codes are sent one by one to the screen. If the codes represent visible
characters, then these characters will appear on the screen. Thus the two statements

VDU 65, 66 , 67 , 88 , 89 , 90

and

PRINT "ABCXYZ" ;

have exactly the same effect. However, the VDU statement is normally used for
sending invisible characters or special control codes to the display hardware. For
example, the ASCII codes from 1 to 31 are reserved for special purposes on the BBC
computer and if. one of these codes is sent to the display hardware, it is intercepted
and handled specially. For example, 8 is the code for 'backspace' and the statement

VDU 8 , 8 , 8

will move the cursor back 3 character positions on the current line. Note that the same
ei'fect can be obtained with

PRINT CHR$(8) ; CHR$(8) ; CHR$(8) ;

or with

back3$ = CHR$(8)+CHR$(8)+CHR$(8)

130

.

.

.

PRINT back3$;

The string 'back3$ ' contains three invisible control characters that are sent to the
display hardware when the string is printed.

In general there are many different ways of sending a sequence of characters
(visible and control) to a device. The most appropriate depends on the application. The
last method above would be most convenient in a program that frequently required to
send three backspaces. Once, the string has been defined and given a name, the
name can be included in a PRINT statement wherever it is required.

Various special control codes will be introduced and 'explained as they are required
in this and later chapters. Tables of the various codes and a brief description of their
effects appear in Appendix 7,

8.2 Coloured text and its uses

Control of the colour of characters is easily effected on the BBC computer from a
BASIC program. The particular facilities discussed in this section are MODE, which
selects a particular graphics and text mode for the screen, and COLOUR, which selects
particular foreground and background colours for the characters. The modes available
to you depend on whether you have a 32K or 16K machine. With the 16K (Model A)
machine MODES 7 to 4 are available and with the 32K (Model B) machine MODES 7 to
0 are available. The computer normally operates in MODE 7 and you can always return
to this mode by pressing BREAK or by typing MODE 7. For example you may be
developing a program that runs in MODE 2. After an erroneous run, a listing in MODE 2
may not be particularly readable, and you could type MODE 7 (without a line number)
and LIST the program in MODE 7. Alternatively you could add the following two lines at
the bottom of every program:

 300 keypress = GET

 310 MODE 7

After a program in say MODE 2 has run pressing any key will clear the screen and
return to MODE 7. You can also switch to MODE 7 by typing CONTROL-V followed by
7 or you might prefer to define one of the user-defined function keys to switch to mode
7 and list the program. (See Appendix I to see how to do this.)

A summary of the character facilities and the colours normally available in each
mode follows. You can see from this that, in general, as the number of characters
available on the screen increases the colour options decrease. This is a point we will be
examining in much more detail when we deal with graphics. Mode 7 uses the Teletext
standard display characters which cannot be changed by the user.

131

Sect ion one: t he 6845
CRTC
The television section of the BBC micro is based around a special chip,
the 6845, running in conjunction with the ULA. There are other bits and
bobs, but we are not concerned with them for the moment. Both of
these chips rival the 6502 as far as complexity is concerned, but the
6845 is considerably easier to use. This chapter describes the hardware
used, and how to program the 6845 yourself.

Before discussing the Beeb way of doing things, it is important that you
understand how the video section of a typical, old fashioned, micro
works. The following account is based on the old PET’s video section.

An area of 1000 bytes of memory is used by both the computer and the
video circuitry. To the computer this area appears as a normal block of
memory, starting at address 32768 and continuing to 33767, assuming
the screen format is 25 lines of 40 characters. The video circuitry
translates data stored in the memory to the pictures you see on the
screen. It does so by accessing each character position of the block in
turn, and then displaying the correct character at the correct point on
the screen. A description follows the circuit diagram.

Simplified 'PET' VDU circuitry

Misc. TTL bits and pieces

Screen

SerializerCharacter
generatorData

Bytes of
screen
memory

Address

Row Video

Data

10

3

1

88

0

1
2
3
4
5
6

996
997
998
999

5

This circuit is simplified — some of the important points and features
have been left out. Each character on the PET screen is made up out of
an 8 by 8 matrix, the same as the BBC micro in modes 0 to 6. Thus,
there are 64 bits needed to make up each character. These bits are
stored in the ‘character generator’ like this:

ADDRESS BINARY DATA
0000 00000000
0001 00111100
0002 00100100
0003 00100100
0004 00100100
0005 00100100
0006 00111100
0007 00000000

And so on with the rest of the characters. The character shown above
is a ‘box’ shape. As you can see, eight bytes of storage are required for
each character. The type of ROM used for a character generator can
hold 2048 bytes, which means that its address bus is 11 bits wide. If
you divide 2048 by eight you get 256, which is the total number of
displayable characters on the PET screen. 256 characters need eight
bits to be represented uniquely. So, the 11 address lines of the character
generator are used as follows:

Low order 3 bits — character row (0 to 7)
High order 8 bits — character select (0 to 255)

So to access the data stored in the 5th row of the 45th character, we
need to put the following data on the character generator’s address
lines:

A0 to A2 — 5
A3 to A10 — 45.

You can see the 11 lines going in to the character generator in the
diagram. The data bus of the character generator is connected to a
serializer, which is a simple chip which accepts eight bits, and then
clocks the bits out at a pre-determined rate, one at a time. This chip is
typically a 74165.

Thus, to display the fifth row of the 45th character, the above
procedure should be carried out, and the required byte will be clocked to
the TV by the serializer.

You can also see from the diagram where the eight ‘character select’
inputs to the character generator come from — they are simply the
contents of the memory location currently being accessed in the VDU
RAM. The ‘row select’ signal comes from the TTL bits and pieces.
These pieces access the VDU RAM at the right time, with the right row

6

output to the character generator, eight times, once for each row of
each character.

The point of that explanation was to show you how the character
generator works. This arrangement is similar to that used in the teletext
mode of the BBC computer, except a special character generator is
used, the SA5050, and the matrix for each character is much larger, 16
by 16.

The other modes are dot resolution modes. Before discussing these
modes, we have to make another comparison, this time with the Atom.
The Atom’s highest resolution screen is mapped like this, with reference
to the start of VDU RAM, which is again 32768:

0 1 2 3 29 30 31
32 33 34 35 61 62 63
64
96

128

Atom high resolution screen mapping

etc. . .

7

7 Edit ing programs

Int roduct ion
The Electron provides you with a number of very useful facilities for
laying out, editing and listing your programs. If you haven‘t done any
programming before, here is a brief list of the sort of facilities you will
need when typing in programs and making them work:

− Being able to display part or the whole of your program on the screen
whenever you want to

− Correcting mistakes, or editing
− Putting comments or notes into the program to help you remember

what each part of the program is doing
− Deleting one or more program lines

To start looking at these facilities and how to use them, type in the
sample program below which we will use to demonstrate the different
facilities.

First, press BREAK to clear the screen and reset the computer, then type
the following and take care with the punctuation and spaces in the last
line.

10 PRI NT "GI VE ME A NUMBER BETWEEN ONE AND TEN"
20 I NPUT X
30 Y=2* X
40 PRI NT "TWO TI MES 2;X;" I S ";Y

After typing in the above program, type

RUN RETURN

When you run this program, the following happens

line 10 GIVE ME A NUMBER BETWEEN ONE AND TEN appears on the
screen

line 20 A question mark appears on the line below, and the computer
waits for you to type in a number which is stored as a variable
called X. Type in a number and press RETURN

line 30 The computer multiplies X by 2 and stores the result as a

variable called Y
line 40 The following is printed on the screen: TWO TIMES (the number

you typed in) IS (the result)

If the program won’t work properly, or you get an error message, press
 ESCAPE and type it again − you most likely made a mistake when you
typed it in the first time.

List ing the program
When you want to change your program in any way, you will need to
display the program (or at least the bit you want) on the screen. To do
this, use the BASIC command LIST. Type

LI ST RETURN

Your program appears immediately underneath the LIST command on
the screen.

If you only want to look at one particular line, say line 40, type

LI ST 40 RETURN

Line 40 of your program is displayed on the screen.

To look at a number of consecutive lines, say lines 20 to 40, type

LI ST 20, 40 RETURN

Lines 20, 30 and 40 appear on the screen.

If you want to see from the beginning of the program up to a particular
line, say line 30, type

LI ST , 30 RETURN

Lines 10, 20 and 30 appear on the screen.

If you want to see from a particular line to the end of the program, then
type

LIST 20, RETURN

Lines 20, 30 and 40 appear on the screen.

Editing programs 25

Please refer to chapter 25 for a description of the LISTO commands. These
commands provide you with even more facilities when listing programs.

Edit ing programs
There are three ways of correcting mistakes in programs you have typed.

One of these you have already met in chapter 5: that is, pressing the
DELETE key which moves the cursor back along the current line deleting
each character as it goes. There is one major drawback to this method − if
you have finished typing a line and have pressed RETURN , you can’t get
the cursor to go back to that line by just pressing the DELETE key. As we
said before, pressing the DELETE key only moves the cursor back along
the current line, which may not be the one you want to correct.

Another method is to type in the line again, but with the correction. The
computer always replaces the old program line with any new version you
type in. If the line to be corrected is very short, then this method is fine;
but if the line is long or complicated, then use the third method described
below.

Edit ing with the arrow keys and the COPY key
Type

LI ST RETURN

The program appears on the screen, and we are going to use it to try out
some editing. The following should now be on your screen:

>LI ST
 10 PRI NT "GI VE ME A NUMBER BETWEEN ONE A
ND TEN"
 20 I NPUT X
 30 Y=2* X
 40 PRI NT "TWO TI MES ";X;" I S ";Y
>_

26 Editing Programs

MAGIC
SQUARE

This program will generate four different sizes of magic
squares using the de la Loubere method. A ‘magic
square’ is a square of numbers where all the rows,
columns, and leading diagonals individually total the
same number.

When you run the program, you’ll be asked to enter an
integer between one and nine. The screen then clears,
and a magic square is constructed. The computer then
deletes some of the numbers in the magic square and
asks you what the mussing numbers are.

M A G I C
S Q U A R E

?
?

?
?

GAMES FOR YOUR BBC MICRO

72

 2 0 R E M M A G I C S Q U A R E

 3 0

 4 0 M O D E 7

 5 0 D I M M (4 7 , 4 7)

 6 0 D I M R (1 2)

 7 0 D I M Q (1 2)

 8 0 I N P U T ' " N O . O F R O W S / C O L U M N S " , N

 9 0 C L S

 1 0 0 P R I N T " M A G I C N O . : "

 1 1 0 P R I N T " R O W S / C O L S : " ; N

 1 2 0 S C = 0

 1 3 0 C 1 = 0

 1 4 0 C = I N T (N / 2) + 1

 1 5 0 R = 1

 1 6 0 C 1 = C 1 + 1

 1 7 0 M (R , C) = C 1

 1 8 0 P R I N T T A B (C * 3 , R * 2 + 1) ; C 1

 1 9 0 D = N * N

 2 0 0 I F C 1 = D T H E N 3 3 0

 2 1 0 I F C 1 / N < > I N T (C 1 / N) T H E N 2 4 0

 2 2 0 R = R + 1

 2 3 0 G O T O 1 6 0

 2 4 0 C = C + 1

 2 5 0 I F C < = N T H E N 2 9 0

 2 6 0 C = 1

 2 7 0 R = R - 1

 2 8 0 G O T O 1 6 0

 2 9 0 R = R - 1

 3 0 0 I F R > 0 T H E N G O T O 1 6 0

 3 1 0 R = N

 3 2 0 G O T O 1 6 0

 3 3 0 T = 0

73

MAGIC SQUARE

 3 4 0 F O R I = 1 T O N

 3 5 0 T = T + M (I , 1)

 3 6 0 N E X T

 3 7 0 P R I N T T A B (1 2 , 0) ; T

 3 8 0 F O R D = 1 T O N + 2

 3 9 0 C = R N D (N)

 4 0 0 R = R N D (N)

 4 1 0 I F M (R , C) > 1 0 0 0 T H E N G O T O 3 9 0

 4 2 0 M (R , C) = M (R , C) + 1 0 0 0

 4 3 0 Q (D) = M (R , C) - 1 0 0 0

 4 4 0 P R I N T T A B (C * 3 , R * 2 + 1) ; C H R $ (8) ; C H R $ (

1 2 9) ; D ; C H R $ (1 3 5)

 4 5 0 N E X T

 4 6 0 V D U 2 8 , 0 , 2 4 , 3 9 , 2 0

 4 7 0 F O R D = 1 T O N + 2

 4 8 0 P R I N T ' " W H A T I S T H E N U M B E R A T " ; C H R

$ (1 2 9) ; D

 4 9 0 I N P U T R (D)

 5 0 0 I F R (D) = Q (D) : S C = S C + 1

 5 1 0 P R I N T ' C H R $ (1 3 1) ; " S C O R E : " ; S C

 5 2 0 N E X T

? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?

GAMES FOR YOUR BBC MICRO

74

D I G I T A L L Y R E M A S T E R E D E D I T I O N

FOR THE BBC & ELECTRON
Dave Carlos/Tim Harrison

WRITING
EDUCATIONAL

PROGRAMS

C O M P U T E R L I B R A R Y

INCLUDES
READY-TO-RUN
EDUCATIONAL

PROGRAMS
A PRACTICAL GUIDE
FOR PARENTS AND

TEACHERS

CONTAINS BUILDING
BLOCKS FOR CONSTRUCTING

NEW PROGRAMS

DESCRIBES
PROGRAM
WRITING

THAT MAKES
LEARNING

FUN!

216 Writing Educational Programs

'Road sign' test

This program involves a multiple-choice routine that might be of use to you in
other situations. It also features a much extended 'PROCdraw_picture' with all
kinds of extra facilities. This should give you a few ideas for extending its use
in programs you want to write.

The avowed aim is to test the learning of road sign recognition and features
twenty different signs, all reproduced on the screen. So that it has a diagnostic
value, there is a printout at the end of all the signs answered incorrectly. To
give greater variation there are thirty-four possible answers, i.e. some signs
are never displayed on screen. Another routine that might be of interest and
use elsewhere select the alternative answers. It is called 'PROCread_answers'
and incorporates a special checking algorithm which won't allow the same
answer to appear twice for the same question.

Figure 10.1

 10 MODE 5
 20 PROCt i t le_page
 30 PROCin i t ia l i se
 40 PROCset_order
 50 PROCset_screen
 60 REPEAT
 70 PROCread_answers

10 Over to You 217

 80 PROCclear_screen
 90 PROCdraw_s ign(s ign_order (num_s igns))
 100 PROCset_prob lem
 110 IF inpu t=answer THEN
 PROCr igh t ELSE PROCwrong
 120 num_s igns=num_s igns+1
 130 UNTIL num_s igns>num_ques t ions
 140 MODE 4
 150 PROCresu l ts
 160 END

This is the master program loop and as usual it calls ail the various procedures
in the correct order. The workings of each procedure are fully documented
below. Line 110 checks the answer given and takes appropriate action, either
PROCright or PROCwrong. The REPEAT/UNTIL loop is terminated when the
number of signs tested is greater than the number of questions set for this test;
this can be changed by altering the value on line 190. PROCresults offers
another go, so there is no need to check for this in the main program loop.

Figure 10.2

 170 DEF PROCin i t ia l i se
 180 LOCAL answer
 190 num_ques t ions=10 : num_answers=34
 : max_ques t ions=20
 200 DIM answers (num_ques t ions) ,
 s ign_order (max_ques t ions)
 210 DIM ques t ion$(4) ,ques t_num(4)
 220 num_s igns=1
 230 num_r igh t=0 : num_wrong=0
 240 FOR answer=1 TO num_ques t ions
 250 answers (answer)=-1
 260 NEXT answer
 270 *FX200,1
 280 PROCcof f
 290 ENDPROC

Lines 190, 220 and 230 set up the various numeric constants used in the
program. The variable 'max questions' holds the number of pictures in the
DATA statements and hence the maximum number of questions that can be
asked without restoring the DATA pointer. The arrays are DIMiensioned in
this routine and these function as follows:

218 Writing Educational Programs

answers(num_question) holds the wrong answers that are typed in;

sign_order(max_questions) holds the pseudo-random order in which the
questions will be displayed;

question$(4) & quest_num(4) are used to hold the possible answers for each
of the questions.

The FOR/NEXT loop, lines 240 to 260, is used to initialize the answer
array to hold '-1' in each element This value is used to signal a correct answer
and this is altered only if a particular answer is incorrect. This is used by
PROCprint_answers to signal which ones are to be printed out at the end,
The *FX 200,1 ensures that the ESCAPE key has no effect during the running
of the program. The cursor is also removed on line 280.

Figure 10.3

 300 DEF PROCset_screen
 310 VDU 26,12
 320 PRINT TAB(2 ,0) ;
 330 PROCdoub le ("Road S ign Tes t . ")
 340 MOVE 180,950 : DRAW 1150,950
 350 MOVE 180,955 : DRAW 1150,955
 360 VDU 19,0 ,0 ,0 ,0 ,0
 370 VDU 19,1 ,1 ,0 ,0 ,0
 380 VDU 19,2 ,4 ,0 ,0 ,0
 390 VDU 19,3 ,7 ,0 ,0 ,0
 400 ENDPROC

This is the screen initialization routine which prints the heading and th•
underlines it, lines 320 to 350. The rest of the code simply sets the colours
their initial values ready for the first sign.

Figure 10.4

 410 DEF PROCread_answers
 420 LOCAL op t ion ,ques t_pos ,pos , found
 430 FOR opt ion=1 TO 4
 440 REPEAT
 450 found=TRUE
 460 ques t_pos=RND(num_answers)
 470 IF ques t_pos=s ign_order (num_s igns) THEN
 found=FALSE
 480 FOR pos=1 TO op t ion

